首页> 外文OA文献 >Parallel algorithms applied to problems in two dimensional detonation shock dynamics
【2h】

Parallel algorithms applied to problems in two dimensional detonation shock dynamics

机译:并行算法应用于二维爆轰冲击动力学问题

摘要

This design and applications project consists in the development of a parallel extension for a two-dimensional Detonation Shock Dynamics code, and to demonstrate how it can be applied for solving engineering problems in detonation physics. Detonation Shock Dynamics (DSD) is an asymptotic theory that describes the evolution of a multidimensional curve detonation shock in terms of an intrinsic evolution equation for the shock surface. Full-LS-DSD2D is a full level set Detonation Shock Dynamics code in Fortran 77 written by Dr. John Bdzil specifically for this project. A level set function numerical algorithm which embeds the two-dimensional detonation front in a three-dimensional filed function, phi(x,y,t), is used to solve for the location of the detonation front, which is given by phi(x,y,t) = 0. The code solves a modified Level Set PDE which maintains phi(x,y,t) as a distance function and uses a fully explicit. A parallel extension of the code was designed, IPC-DSD2D (Illinois Parallel Cluster DSD2D), as a Message Passing model using an MPI interface. IPC-DSD2D was benchmarked for scalability, accuracy and overall performance. Benchmarking was performed on a vertical rate stick problem that had ideal load balancing properties. The test problem was run on three different computer architectures: the Turing Cluster at the University of Illinois Urbana-Champaign, an eight core Macintosh Mac Pro, and NCSA???s SGI Altix (Cobalt).The benchmarking of the code showed very good performance metrics; the speedup and efficiency where high, and behaved in a stable and predictable pattern.After the code was verified and tested for performance and efficiency, it was used in a shape optimization study. A multicomponent nonlinear optimization system was built to generate optimal, shaped charge geometries using Detonation Shock Dynamics. The idea was to use IPC-DSD2D to estimate the shock pressure along a shaped charge liner and the normal shock velocity at the apex of the liner. These flow variables were then to be used as inputs for a Lagrangian finite element code to determine the shape of the jet that is formed by the detonation shock pressure crushing the liner. Through a set of constrained objective functions, a nonlinear optimizer, a shape can be found that has optimal jet properties. By running a DSD simulation of a simplified shaped charge, it was successfully shown how DSD could be used in the design of shaped charges. This thesis only describes the optimization system, and did not simulate the design loop.This thesis is divided into ten chapters. Chapters 1 and 2 briefly describe the theory of DSD and some necessary concepts in parallel computing design. Chapters 3 through 5 talk about the mathematical and numerical model used in DSD2D, and the parallel implementation of the code. Chapter 6 shows numerical results using IPC-DSD2D and Chapter 7 shows the parallel benchmarking of the code using the three computer architectures mentioned earlier. Chapter 8 describes the optimization system using DSD to find optimal shape charge geometries. Chapter 9 shows how to extend IPC-DSD2D for a three-dimensional DSD code [5]. Chapter 10 has the conclusions and final thoughts about the parallel implementation of Full-LS-DSD2D and the optimization system for designing shape charges using DSD.
机译:该设计和应用项目包括为二维爆震冲击动力学代码开发并行扩展,并演示如何将其应用于解决爆震物理中的工程问题。爆震冲击动力学(DSD)是一种渐进理论,它根据冲击表面的固有演化方程来描述多维曲线爆震的演变。 Full-LS-DSD2D是John Bdzil博士专门为该项目编写的Fortran 77中的全套爆震冲击动力学代码。使用水平集函数数值算法将二维爆震波前嵌入到三维场函数phi(x,y,t)中,以求解由phi(x ,y,t)=0。该代码解决了经过修改的水平集PDE,该水平集将phi(x,y,t)保持为距离函数,并使用完全显式。设计了代码的并行扩展IPC-DSD2D(伊利诺伊州并行集群DSD2D),作为使用MPI接口的消息传递模型。 IPC-DSD2D针对可扩展性,准确性和整体性能进行了基准测试。对具有理想负载平衡属性的垂直速率问题进行基准测试。测试问题是在三种不同的计算机体系结构上运行的:伊利诺伊大学厄本那香槟分校的Turing集群,八核Macintosh Mac Pro和NCSA的SGI Altix(钴)。代码的基准测试显示非常好性能指标;在验证并测试了代码的性能和效率后,将其用于形状优化研究中。建立了多组分非线性优化系统,以使用爆震冲击动力学生成最佳的成形装药几何形状。想法是使用IPC-DSD2D估算沿成形装药衬套的冲击压力以及衬套顶点处的正常冲击速度。然后将这些流量变量用作拉格朗日有限元代码的输入,以确定爆震冲击压力压碎衬管形成的射流形状。通过一组受约束的目标函数,非线性优化器,可以找到具有最佳射流特性的形状。通过对简化的成形装药进行DSD模拟,已成功展示了如何在成形装药的设计中使用DSD。本文仅描述了优化系统,没有对设计循环进行仿真。本文共分为十章。第1章和第2章简要介绍了DSD的理论以及并行计算设计中的一些必要概念。第3至5章讨论了DSD2D中使用的数学和数值模型,以及代码的并行实现。第6章显示了使用IPC-DSD2D的数值结果,第7章显示了使用前面提到的三种计算机体系结构对代码的并行基准测试。第8章介绍了使用DSD查找最佳装药几何形状的优化系统。第9章显示了如何为三维DSD代码[5]扩展IPC-DSD2D。第10章对Full-LS-DSD2D的并行实现以及使用DSD设计形状装药的优化系统进行了总结和总结。

著录项

  • 作者

    Hernandez Alberto M.;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号