首页> 外文OA文献 >Patterned Quantum Dot and Inverse Quantum Dot Active Layers for Optoelectronics Applications
【2h】

Patterned Quantum Dot and Inverse Quantum Dot Active Layers for Optoelectronics Applications

机译:用于光电子应用的图案化量子点和反量子点有源层

摘要

The use of semiconductor quantum dots (QDs) in photonic devices has become widespread in recent years and QDs themselves have received a considerable amount of attention from the photonics community. Not only do they offer many potential advantages in lasers, but they have also become interesting from an applied physics perspective as tools for exploring strong coupling in nanoscale cavities, as single photon emitters, and possibly as elements of quantum information circuits. To a great extent many of the promises made about the advantages QDs would bring to photonic devices remain unfulfilled, largely due to the size inhomogeneity and random placement inherent with the self-assembled growth technique. The work in this document demonstrates that it is possible to create patterned QDs with precisely engineered properties such as diameter, thickness, material composition, position, and emission wavelength, while simultaneously maintaining the high optical quality of the material necessary for incorporation into optoelectronic devices. These QDs are fabricated using electron beam lithography combined with wet-etching and regrowth techniques. We also present a detailed theoretical analysis of a novel structure which can only be formed by patterning techniques known as the nanopore or inverse quantum dot structure. This structure is the electronic analogue of a photonic crystal. We show that the perturbation of an ordinary quantum well by a periodic two-dimensional lattice of energy barriers leads to the introduction of intraband energy gaps. The predicted results show excellent agreement with experimental data obtained from devices fabricated by selective area epitaxy. In addition, we have explored the use of the wet-etching technique for the fabrication of this nanostructure. The wet-etching technique is shown to provide a higher degree of flexibility and repeatability than the selective area epitaxy process. The experimental results suggest a significant reduction in intersubband scattering rates resulting in a drastic modification of the interband optical properties, which may be useful for the utilization of the nanopore structure in intersubband devices. This observation is supported by analytical calculations of the electron-phonon scattering rates in the nanopore structure.
机译:近年来,在光子器件中半导体量子点(QD)的使用已变得越来越普遍,而且QD本身已引起了光子学界的极大关注。它们不仅在激光器中提供了许多潜在的优势,而且从应用物理学的角度来看,它们还被用作探索纳米级腔体中强耦合的工具,单个光子发射器以及可能作为量子信息电路的元件。在很大程度上,关于量子点将带给光子器件的优势的许多承诺仍未实现,这在很大程度上是由于自组装生长技术固有的尺寸不均匀性和随机放置。该文件中的工作表明,可以创建具有精确设计特性(例如直径,厚度,材料成分,位置和发射波长)的图案化QD,同时保持并入光电器件所需的材料的高光学质量。这些QD是使用电子束光刻技术结合湿法蚀刻和再生技术制成的。我们还提出了一种新型结构的详细理论分析,该结构只能通过称为纳米孔或逆量子点结构的图案化技术来形成。这种结构是光子晶体的电子类似物。我们表明,由势垒的周期性二维晶格对普通量子阱的扰动导致带内能隙的引入。预测结果显示出与通过选择性区域外延制造的器件获得的实验数据极好的一致性。另外,我们已经探索了使用湿蚀刻技术来制造这种纳米结构。与选择区域外延工艺相比,湿法蚀刻技术显示出更高的灵活性和可重复性。实验结果表明,子带间散射速率的显着降低导致带间光学特性的急剧改变,这可能对子带间设备中纳米孔结构的利用很有用。该观察结果得到纳米孔结构中电子-声子散射速率的分析计算的支持。

著录项

  • 作者

    Verma Varun B.;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号