首页> 外文OA文献 >Optimal fault-tolerant flight control for aircraft with actuation impairments
【2h】

Optimal fault-tolerant flight control for aircraft with actuation impairments

机译:具有致动障碍的飞机的最佳容错飞行控制

摘要

Current trends towards greater complexity and automation are leaving moderntechnological systems increasingly vulnerable to faults. Without proper action, aminor error may lead to devastating consequences. In flight control, where thecontrollability and dynamic stability of the aircraft primarily rely on the controlsurfaces and engine thrust, faults in these effectors result in a higher extent of risk forthese aspects. Moreover, the operation of automatic flight control would be suddenlydisturbed. To address this problem, different methodologies of designing optimalflight controllers are presented in this thesis. For multiple-input multiple-output(MIMO) systems, the feedback optimal control is a prominent technique that solvesa multi-objective cost function, which includes, for instance, tracking requirementsand control energy minimisation.The first proposed method is based on a linear quadratic regulator (LQR) controllaw augmented with a fault-compensation scheme. This fault-tolerant system handlesthe situation in an adaptive way by solving the optimisation cost function andconsidering fault information, while assuming an effective fault detection system isavailable. The developed scheme was tested in a six-degrees-of-freedom nonlinearenvironment to validate the linear-based controller. Results showed that this faulttolerant control (FTC) strategy managed to handle high magnitudes of the actuator’sloss of effciency faults. Although the rise time of aircraft response became slower,overshoot and settling errors were minimised, and the stability of the aircraft wasmaintained.Another FTC approach has been developed utilising the features of controllerrobustness against the system parametric uncertainties, without the need for reconfigurationor adaptation. Two types of control laws were established under this scheme,theH∞and µ-synthesis controllers. Both were tested in a nonlinear environmentfor three points in the flight envelope: ascending, cruising, and descending. TheH∞controller maintained the requirements in the intact case; while in fault, it yieldednon-robust high-frequency control surface deflections. The µ-synthesis, on the otherhand, managed to handle the constraints of the system and accommodate faultsreaching 30% loss of effciency in actuation. The final approach is based on the control allocation technique. It considers the tracking requirements and the constraints ofthe actuators in the design process. To accommodate lock-in-place faults, a newcontrol effort redistribution scheme was proposed using the fuzzy logic technique,assuming faults are provided by a fault detection system. The results of simulationtesting on a Boeing 747 multi-effector model showed that the system managed tohandle these faults and maintain good tracking and stability performance, with someacceptable degradation in particular fault scenarios. The limitations of the controllerto handle a high degree of faults were also presented.
机译:当前越来越复杂和自动化的趋势使现代技术系统越来越容易出现故障。如果不采取适当的措施,错误可能会导致灾难性后果。在飞行控制中,飞机的可控制性和动态稳定性主要取决于控制面和发动机推力,这些效应器中的故障会导致较高的风险。而且,自动飞行控制的操作将突然受到干扰。为了解决这个问题,本文提出了设计最优飞行控制器的不同方法。对于多输入多输出(MIMO)系统,反馈最优控制是解决多目标成本函数的一项重要技术,该函数包括例如跟踪要求和控制能量最小化。首先提出的方法基于线性二次方带有故障补偿方案的调节器(LQR)控制律。该容错系统通过求解优化成本函数并考虑故障信息,以适应性方式处理情况,同时假设有一个有效的故障检测系统。在六自由度非线性环境中测试了开发的方案,以验证基于线性的控制器。结果表明,这种容错控制(FTC)策略设法处理了执行器效率故障造成的大量损失。尽管飞机响应的上升时间变慢了,但过冲和稳定误差却被最小化了,并保持了飞机的稳定性。另一种FTC方法已经开发出来,利用了控制器对系统参数不确定性的鲁棒性,无需重新配置或调整。在该方案下建立了两种控制律,即H∞和μ合成控制器。两者均在非线性环境中进行了飞行包线中的三个点测试:上升,巡航和下降。在完整的情况下,H∞控制器保持了要求;发生故障时,产生了非鲁棒的高频控制面挠度。另一方面,μ合成可以处理系统的约束并适应故​​障,致动效率降低30%。最终方法基于控制分配技术。它在设计过程中考虑了跟踪要求和执行器的约束。为了适应在位故障,提出了一种采用模糊逻辑技术的控制力重新分配方案,假设故障由检测系统提供。在Boeing 747多执行器模型上进行的仿真测试结果表明,该系统设法处理了这些故障并保持了良好的跟踪和稳定性能,在某些故障情况下性能可以接受。还提出了控制器处理严重故障的限制。

著录项

  • 作者

    Almutairi S H;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号