首页> 外文OA文献 >Applications of Thermal Lens Microscopy in Microfluidic Systems
【2h】

Applications of Thermal Lens Microscopy in Microfluidic Systems

机译:热透镜显微镜在微流控系统中的应用

摘要

Detection in microfluidic systems requires highly sensitive analytical methods, because of the very short optical interaction length, which is usually in the range of 100 μm or shorter. Furthermore, the amounts of analytes in detection volumes are extremely small (femto- or attomoles). Thermal lens spectrometry and particularly thermal lens microscopy (TLM) appear as techniques of choice for detection in microfluidic and lab-on-a-chip systems, since they enable measurements of absorbance’s or absorbance changes as low as 10-7. In addition to ultra-high sensitivity, TLM offers high spatial resolution (≈1 μm) and sufficient temporal resolution (ms range), which is required for studies of processes in microfluidic systems. Recent development of TLM theory and instrumentation lead to experimental confirmations of the effects of microfluidic flows on the TLM signal, which affects the sensitivity. On the other hand, these observations have enabled optimization of TLM instruments [1]. As a result of these advancements, applications of TLM were extended from simple laminar flows [2], to highly complex systems such as Tylor-type flows, where TLM detection provided data for description of diffusion processes in n-octane/methanol binary liquid systems [3]. The major streamline of TLM applications was however focused on the development of vanguard analytical systems [4], which are needed in various fields of chemical analysis, including food safety and quality control, environmental monitoring as well as biomedical research and diagnostics. Such systems are used as sample screening systems (sample filters or selectors) when the information is needed quickly to make immediate decisions in relation to the analytical problem. They provide simplicity (e.g. little or no sample pre-treatment), low cost, rapid and reliable response, and frequently give just binary responses. However, their major weakness is low metrological quality of results. Therefore, uncertainties of up to 5–15% are usually accepted as a toll for rapidity and simplicity, which are essential even though in contradiction with conventional analytical concepts. With the objective of developing new vanguard analytical systems, a relevant goal is to exploit the advantages offered by microfluidic lab-on-a-chip systems on one hand, and TLM detection on the other. In such combinations, the FIA approach simplifies sample handling (e.g. volume measurements) and transport to the detector, while microfluidic lab-on-a-chip technology can facilitate and speed up processes including colorimetric reactions, antigen–antibody or enzyme–substrate interactions in bioanalytical systems, and even extraction and preconcentration steps by introducing continuous flow processing and micro unit operations in chemical analysis [2]. High sensitivity of TLM in such systems offers low limits of detection, which also contribute to low uncertainties that are typically below 10%. An important advantage of microfluidic systems lies in the fact that small dimensions of such systems, which consist of capillaries and micro reactors with dimensions about 10 to 100 μm, significantly reduce the molecular diffusion time, which is inversely proportional to the second power of distance. For example, the time required for completion of an ELISA immunoassay for NGAL a biomarker of acute kidney failure was reduced from four hours to only 30 mins. [5, 6] when transferring the assay into a microfluidic system, while maintaining or even improving the sensitivity. Even more evident improvement in sample throughput (reduction of analysis time from 10 hours to 30 minutes) was achieved for determination of antibodies for human papilloma virus (anti L1 HPV 16) in blood plasma, after immobilizing adequate pseudovirions as antigens on magnetic nanobeads [6]. Other health-related applications include detection of toxins, such as microcystin, or carcinogenic substances such as Cr(VI), which offers improved limits of detection as compared to spectrophotometry as well as sample throughput, which can reach 20 samples/min. [7].[1] M. Liu and M. Franko, Crit. Rev. Anal. Chem. 44, 328-353 (2014).[2] T. Kitamori, M. Tokeshi, A. Hibara, and K. Sato, Anal. Chem. 76, 52A-60A (2004). [3] M. Lubej, U. Novak, M. Liu, M. Martelanc, M. Franko and I. Plazl, Lab Chip (2015) DOI:10.1039/c4lc01460j.[4] M. Valcárcel and B. Lendl. Trends Anal. Chem. 23, 527-534 (2004).[5] T. Radovanović, M. Liu, P. Likar, M. Klemenc and M. Franko, Int. J. Thermophys. (2014) DOI:10.1007/s10765-014-1699-9.[6] T. Radovanović, Dissertation, University of Nova Gorica (2016).[7] M. Franko, M. Liu, A. Boškin, A. Delneri, and M.A. Proskurnin, Anal. Sci. 32, 23-30 (2016).
机译:由于非常短的光学相互作用长度(通常在100μm或更短范围内),在微流体系统中进行检测需要高度灵敏的分析方法。此外,检测体积中的分析物数量极少(毫微微或小原子)。热透镜光谱法,尤其是热透镜显微镜(TLM)似乎是微流体和芯片实验室系统中检测的首选技术,因为它们可以测量低至10-7的吸光度或吸光度变化。除了超高灵敏度,TLM还提供了高空间分辨率(≈1μm)和足够的时间分辨率(ms范围),这是研究微流体系统中的过程所必需的。 TLM理论和仪器的最新发展导致实验证明了微流体流对TLM信号的影响,这会影响灵敏度。另一方面,这些观察结果使TLM仪器的优化成为可能[1]。这些进步的结果是,TLM的应用从简单的层流[2]扩展到了高度复杂的系统,例如Tylor型流,其中TLM检测提供了描述正辛烷/甲醇二元液体系统中扩散过程的数据。 [3]。然而,TLM应用程序的主要精简重点是开发先进的分析系统[4],这在化学分析的各个领域都需要,包括食品安全和质量控制,环境监测以及生物医学研究和诊断。当快速需要信息以做出有关分析问题的即时决策时,此类系统可用作样品筛选系统(样品过滤器或选择器)。它们提供了简单性(例如很少或没有样品预处理),低成本,快速而可靠的响应,并且经常仅给出二进制响应。但是,它们的主要缺点是结果的计量质量低。因此,通常认为高达5-15%的不确定性是快速和简便的代价,即使与常规分析概念相抵触,这也是必不可少的。以开发新的先锋分析系统为目标,一个相关的目标是一方面利用微流体芯片实验室系统提供的优势,另一方面利用TLM检测提供的优势。在这种组合中,FIA方法简化了样品处理(例如,体积测量)和运输到检测器的过程,而微流体芯片实验室技术可以促进并加速包括比色反应,抗原-抗体或酶-底物相互作用的过程。生物分析系统,甚至在化学分析中引入连续流处理和微单元操作,甚至进行萃取和预浓缩步骤[2]。这种系统中TLM的高灵敏度提供了低检测限,这也导致了通常低于10%的低不确定性。微流体系统的重要优点在于以下事实:由毛细管和尺寸约10至100μm的微型反应器组成的此类系统的小尺寸,显着减少了分子扩散时间,该时间与距离的二次方成反比。例如,完成NGAL(急性肾衰竭的生物标志物)的ELISA免疫测定所需的时间从4小时减少到仅30分钟。 [5,6]当将测定转移到微流体系统中时,同时保持甚至提高了灵敏度。在将足够的假病毒颗粒作为抗原固定在磁性纳米珠上后,测定血浆中人乳头瘤病毒(抗L1 HPV 16)抗体的样品通量(分析时间从10小时减少到30分钟)得到了更明显的改善[6]。 ]。其他与健康相关的应用包括检测毒素(例如微囊藻毒素)或致癌物质(例如Cr(VI)),与分光光度法相比,检测限得到提高,样品通量可达到20个样品/分钟。 [7]。[1]刘敏(M. Liu)和弗兰科(M.肛门牧师化学44,328-353(2014)。[2] T. Kitamori,M。Tokeshi,A。Hibara和K. Sato,肛门。化学76,52A-60A(2004)。 [3] M. Lubej,U。Novak,M。Liu,M。Martelanc,M。Franko和I. Plazl,实验室芯片(2015)DOI:10.1039 / c4lc01460j。[4] M.Valcárcel和B.Lendl。趋势肛门。化学23,527-534(2004)。[5] T.Radovanović,M。Liu,P。Likar,M。Klemenc和M. Franko,国际。 J.热物理学。 (2014)DOI:10.1007 / s10765-014-1699-9。[6] T.Radovanović,诺瓦哥里卡大学论文(2016年)。[7] M. Franko,M。Liu,A。Boškin,A。Delneri和M.A. Proskurnin,肛门。科学32,23-30(2016)。

著录项

  • 作者

    Franko Mladen;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号