首页> 美国卫生研究院文献>Biomicrofluidics >Microfluidics on the fly: Inexpensive rapid fabrication of thermally laminated microfluidic devices for live imaging and multimodal perturbations of multicellular systems
【2h】

Microfluidics on the fly: Inexpensive rapid fabrication of thermally laminated microfluidic devices for live imaging and multimodal perturbations of multicellular systems

机译:飞行中的微流控技术:便宜的快速制造热层压微流控设备用于实时成像和多细胞系统的多峰扰动

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Microfluidic devices provide a platform for analyzing both natural and synthetic multicellular systems. Currently, substantial capital investment and expertise are required for creating microfluidic devices using standard soft-lithography. These requirements present barriers to entry for many nontraditional users of microfluidics, including developmental biology laboratories. Therefore, fabrication methodologies that enable rapid device iteration and work “out-of-the-box” can accelerate the integration of microfluidics with developmental biology. Here, we have created and characterized low-cost hybrid polyethylene terephthalate laminate (PETL) microfluidic devices that are suitable for cell and micro-organ culture assays. These devices were validated with mammalian cell lines and the wing imaginal disc as a model micro-organ. First, we developed and tested PETLs that are compatible with both long-term cultures and high-resolution imaging of cells and organs. Further, we achieved spatiotemporal control of chemical gradients across the wing discs with a multilayered microfluidic device. Finally, we created a multilayered device that enables controllable mechanical loading of micro-organs. This mechanical actuation assay was used to characterize the response of larval wing discs at different developmental stages. Interestingly, increased deformation of the older wing discs for the same mechanical loading suggests that the compliance of the organ is increased in preparation for subsequent morphogenesis. Together, these results demonstrate the applicability of hybrid PETL devices for biochemical and mechanobiology studies on micro-organs and provide new insights into the mechanics of organ development.
机译:微流体设备为分析天然和合成多细胞系统提供了平台。当前,需要大量的资本投资和专业知识来使用标准的软光刻技术来制造微流体装置。这些要求为许多非传统的微流体使用者(包括发育生物学实验室)带来了进入壁垒。因此,能够快速进行设备迭代并“开箱即用”工作的制造方法可以加速微流体与发育生物学的整合。在这里,我们创建并表征了适用于细胞和微器官培养测定的低成本杂化聚对苯二甲酸乙二醇酯层压板(PETL)微流体装置。这些设备已通过哺乳动物细胞系和翼状假想椎间盘作为模型微器官进行了验证。首先,我们开发并测试了与细胞和器官的长期培养以及高分辨率成像兼容的PETL。此外,我们使用多层微流控装置实现了跨机翼盘的化学梯度的时空控制。最后,我们创建了一个多层设备,可以控制微器官的机械负载。该机械驱动测定法用于表征幼虫翼盘在不同发育阶段的响应。有趣的是,在相同的机械载荷下,较旧的机翼盘变形增加,表明器官的顺应性增加,为随后的形态发生做准备。总之,这些结果证明了混合PETL装置在微器官的生化和力学生物学研究中的适用性,并为器官发育的机理提供了新的见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号