首页> 外文OA文献 >Active and passive measures to maintain pressure in LNG fuel systems for ships
【2h】

Active and passive measures to maintain pressure in LNG fuel systems for ships

机译:维持船舶液化天然气燃料系统压力的主动和被动措施

摘要

The purpose of this master thesis is to investigate the effects of active and passive measures to maintain the pressure in LNG fuel systems for ships. The background was two de-loading events that occurred on the gas engines on KV Bergen, a Norwegian Coast Guard vessel, in 2012 and 2013. The events triggered research, both on why a sudden large drop in the fuel tank pressure can occur, and how they could be prevented in the future.The task required development of two models or simulation tools. One model was needed to assess the capacity of the Pressure Build-up Unit (PBU) on KV Bergen, another to analyse different aspects relevant for the pressure development of a fuel tank. Thus, the models had to quantify the drop in pressure, assess the contribution from various parame-ters decisive for the development of the tank pressure, such as relevant tank, LNG system and sea conditions. An inert gas for rapid pressurization of the fuel tank was additionally including in the model. The models are scripted in Matlab and utilize the thermodynamic properties provided by the software REFPROP NIST. The models draw on accessible data for KV Bergen and another LNG fueled vessel, the car-ferry MF Korsfjord. In the capacity model for the PBU, the principles of the thermosyphon effect are used for calculating the mass flow rate and the return temperature of the LNG. A sensitivity anal-ysis was carried out to evaluate the importance of different parameters on the design ge-ometry and the system configurations of the PBU onboard KV Bergen.The fuel tank pressure development model consists of the internal energy and the mass balance of the vapor and the liquid sections of the fuel tank. Departing from the basic pressurization capacity with evaporation through the PBU and condensation at the liquid-vapor interface, the model add in-tank waves representing the impact of rough sea, injec-tion of gaseous Nitrogen to achieve additional pressurization capacity, and the use of warm-er LNG to reduce the condensation rate. The results obtained in this master thesis strongly suggest that an LNG fueled vessel should be capable of ensuring that the bulk LNG in the fuel tank keeps a temperature with a liquid saturation pressure higher than the designed minimum pressure for the gas engines. According to the thermodynamics, it will then no longer be possible for the tank pressure to fall so low that it will cause a de-loading of the gas engines. For KV Bergen, warm LNG at minimum -143.15 °C (130 K) with a liquid saturation pressure of 3.75 bar, is sufficient. The de-loading pressure limit is stated to be 3.6 bar for the gas engines on KV Bergen (DiRenzo 2014a). To obtain warm enough LNG, the fuel can either be heated during the bunkering process or later in the fuel tank by the PBU. The increase for the first approach is negligible compared to the time the PBU needs for heating up a full tank with cold LNG. A thermal governed PID-controller should be installed in the PBU, ensuring that the LNG is completely evaporated and sufficiently superheated before returned to the fuel tank.Finally, Nitrogen can be injected into the LNG tank if the PBU for any reason is not capable of maintaining the pressure. As an inert gas, the added Nitrogen does hardly impact the material quality of the LNG, and is thus well suited as a pressurant.
机译:本论文的目的是研究主动和被动措施对维持船舶液化天然气燃料系统压力的影响。背景是在2012年和2013年,发生在挪威海岸警卫队KV Bergen燃气发动机上的两次卸油事件。这些事件引发了关于为何油箱压力突然突然下降的研究,以及该任务需要开发两个模型或仿真工具。需要一种模型来评估KV卑尔根上的压力累积装置(PBU)的容量,另一种模型则用来分析与燃料箱压力发展相关的不同方面。因此,这些模型必须量化压力下降,评估影响罐压发展的各种参数的贡献,例如相关的罐,液化天然气系统和海况。该模型中还包括用于快速加压燃料箱的惰性气体。该模型在Matlab中编写脚本,并利用REFPROP NIST软件提供的热力学特性。这些模型利用了卑尔根(KV)卑尔根和另一艘以液化天然气为燃料的轮渡MF Korsfjord的可访问数据。在PBU的容量模型中,热虹吸效应的原理用于计算LNG的质量流量和返回温度。进行了敏感性分析,以评估KV Bergen机载PBU的设计几何和系统配置中不同参数的重要性。燃料箱压力发展模型由内部能量以及燃料箱的蒸汽和液体部分的质量平衡组成。该模型与基本加压能力不同,该模型通过PBU蒸发并在液-气界面发生冷凝,从而增加了代表粗浪影响,注入气态氮以实现额外加压能力的罐内波,以及使用加热液化天然气以降低冷凝率。在本论文中获得的结果有力地表明,以LNG燃料为燃料的容器应能够确保燃料罐中的LNG保持液体饱和压力的温度高于燃气发动机的设计最低压力。根据热力学,油箱压力将不再可能下降到如此低的水平,以至于将导致燃气发动机卸载。对于KV卑尔根,在-143.15°C(130 K)的最低温度和3.75 bar的液体饱和压力下加热LNG就足够了。对于KV卑尔根的燃气发动机,卸荷压力限制规定为3.6 bar(DiRenzo 2014a)。为了获得足够温暖的液化天然气,可以在加油过程中加热燃料,也可以稍后通过PBU在燃料箱中加热燃料。与PBU用冷LNG加热满罐所需的时间相比,第一种方法的增加可以忽略不计。应在PBU中安装温度调节的PID控制器,以确保LNG在返回燃料箱之前已完全蒸发并充分过热。最后,如果由于任何原因PBU无法将氮气注入LNG箱中,则可以将氮气注入LNG箱中保持压力。作为惰性气体,添加的氮气几乎不会影响LNG的材料质量,因此非常适合用作增压剂。

著录项

  • 作者

    Hernes Hugo Eugen;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号