首页> 美国政府科技报告 >Reduction and Binding of Arsenate and Dimethylarsinate by Glutathione: A MagneticResonance Study
【24h】

Reduction and Binding of Arsenate and Dimethylarsinate by Glutathione: A MagneticResonance Study

机译:谷胱甘肽对砷酸盐和二甲基胂酸盐的还原和结合:磁共振研究

获取原文

摘要

By observing the chemical shifts of the proton and carbon-13 nuclei of reducedglutathione, the interactions of arsenate, arsenite and dimethylarsinate with this tripeptide have been characterized. These spectral studies show the reduction and complexation of arsenic to be a two-step process. Initially, the oxidation of 2 mol of glutathione reduces arsenate to arsenite. Then, 3 mol of glutathione are consumed in the formation of a glutathione-arsenite complex. Similar experiments with arsenite identified a (glutathione)3-arsenite complex; however, no oxidized glutathione was detected. The arsenite binding site in the glutathione-arsenite complex is the cysteinyl sulfhydryl. The glutathione-arsenite complex is stable over the pH range from 1.5 to 7.0-7.5. At higher pH, dissociation occurs releasing reduced glutathione. For a glutathione to dimethylarsinate ratio of 3, oxidized glutathione is also coupled with a reduction to trivalent dimethylarsinous acid, prior to the formation of a 1:1 glutathione-dimethylarsinite complex. The role of reduced glutathione in the metabolism of arsenic is consistent with the previously described effects of this agent on the organismic toxicity of arsenic. (Copyright (c) 1994 Elsevier Science Ireland Ltd.)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号