首页> 美国政府科技报告 >Multi-Dimensional Hybrid-Simulation Techniques in Plasma Physics
【24h】

Multi-Dimensional Hybrid-Simulation Techniques in Plasma Physics

机译:等离子体物理中的多维混合仿真技术

获取原文

摘要

Multi-dimensional hybrid simulation models have been developed for use in studying plasma phenomena on extended time and distance scales. The models make fundamental use of the small Debye length or quasi-neutrality assumption. The ions are modeled by particle-in-cell (PIC) techniques while the electrons are considered a collision-dominated fluid. The fields are calculated in the nonradiative Darwin limit. Some electron inertial effects are retained in the Finite Electron Mass model (FEM). In this model, the quasi-neutral counterpart of Poisson's equation is obtained by first summing the electron and ion momentum equations and then taking the quasi-neutral limit. In the Zero Electron Mass (ZEM) model explicit use is made of the axisymmetric properties of the model to decouple the components of the model equations. Equations to self-consistently advance the electron temperature have recently been added to the scheme. The model equations which result from these considerations are two coupled, nonlinear, second order partial differential equations. (ERA citation 07:048703)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号