首页> 美国政府科技报告 >Spatially random models, estimation theory, and robot arm dynamics
【24h】

Spatially random models, estimation theory, and robot arm dynamics

机译:空间随机模型,估计理论和机器人手臂动力学

获取原文

摘要

Spatially random models provide an alternative to the more traditional deterministic models used to describe robot arm dynamics. These alternative models can be used to establish a relationship between the methodologies of estimation theory and robot dynamics. A new class of algorithms for many of the fundamental robotics problems of inverse and forward dynamics, inverse kinematics, etc. can be developed that use computations typical in estimation theory. The algorithms make extensive use of the difference equations of Kalman filtering and Bryson-Frazier smoothing to conduct spatial recursions. The spatially random models are very easy to describe and are based on the assumption that all of the inertial (D'Alembert) forces in the system are represented by a spatially distributed white-noise model. The models can also be used to generate numerically the composite multibody system inertia matrix. This is done without resorting to the more common methods of deterministic modeling involving Lagrangian dynamics, Newton-Euler equations, etc. These methods make substantial use of human knowledge in derivation and minipulation of equations of motion for complex mechanical systems.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号