首页> 美国政府科技报告 >Large-scale static investigation of circulation-control-wing concepts applied to upper surface-blowing aircraft
【24h】

Large-scale static investigation of circulation-control-wing concepts applied to upper surface-blowing aircraft

机译:应用于上部地面吹制飞机的循环控制翼概念的大规模静态研究

获取原文

摘要

The use of a circulation control to deflect turbofan engine thrust beyond 90 deg. has been proven in full-scale static ground tests of the circulation-control-wing/upper-surface-blowing (CCW/USB) concept. This powered high-lift system employs a circular, blown trailing edge to replace the USB mechanical flaps to entrain engine-exhaust flow, and to obtain both a vertical-thrust component and an augmented circulation lift for short takeoff and landing (STOL) applications. Previous tests (Phase 1), done in 1982, of a basic configuration installed on the Quiet Short Haul Research Aircraft confirmed these CCW/USB systems capabilities. A second phase (Phase 2) of full-scale, static, thrust-deflection investigations has reconfirmed the ability to deflect engine thrust from 40 to 102 deg., depending on thrust level. Five new configurations were evaluated and performance improvements noted for those configurations with larger blown span, fences or favorable engine interactions, smaller slot height, and larger radii with less than 180 deg. of CCW surface arc. In general, a 90 deg. circular arc with a smaller slot height provided the best performance, demonstrating that adequate thrust turning can be produced by a trailing-edge shape which may have minimal cruise-performance penalty. Thrust deflections were achieved at considerably lower blowing momentum than was required for the baseline case of Phase 1. Improved performance and versatility were thus confirmed for the CCW/USB system applied to STOL aircraft, where the potential for developing a non-moving-parts pneumatic thrust deflector to rapidly vary horizontal force from thrust to drag, while maintaining constant vertical force, appears quite promising. The conversion from high-lift to lower-drag cruise mode by merely terminating the blowing provides an effective STOL aircraft system.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号