首页> 美国政府科技报告 >High-energy astrophysics: A theoretical analysis of thermal radiation from neutron stars
【24h】

High-energy astrophysics: A theoretical analysis of thermal radiation from neutron stars

机译:高能天体物理学:中子星热辐射的理论分析

获取原文

摘要

The unambiguous detection of thermal radiation from the surface of a cooling neutron star was one of the most anxiously awaited results in neutron star physics. This particular Holy Grail was found by Halpern and Holt, who used ROSAT to detect pulsed X-rays from the gamma-ray source Geminga and demonstrate that it was a neutron star, probably a radio pulsar beamed away from us. At an age of approximately 3.4 x 10(exp 5) years, Geminga is in the photon cooling era. Its surface temperature of 5.2 x 10(exp 5) K can be explained within the contexts of both the slow and fast cooling scenarios. In the slow cooling scenario, the surface temperature is too high unless the specific heat of the interior is reduced by extensive baryon pairing. In the fast cooling scenario, the surface temperature will be much too low unless the fast neutrino cooling is shut off by baryon pairing. Two other pulsars, PSR 065614 and PSR 1055-52, have also been detected in thermal X-rays by ROSAT. They are also in the photon cooling era. All of this research's neutron star cooling models to date have used the unmagnetized effective temperature-interior temperature relation for the outer boundary condition. Models are being improved by using published magnetic envelope calculations and assumed geometried for the surface magnetic field to determine local interior temperature-emitted flux relations for the surface of the star.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号