首页> 美国政府科技报告 >Application of Space Shuttle photography to studies of upper ocean dynamics
【24h】

Application of Space Shuttle photography to studies of upper ocean dynamics

机译:航天飞机摄影在上层海洋动力学研究中的应用

获取原文

摘要

Three studies have been conducted using space shuttle imagery to explain the dynamics behavior of internal waves in the Atlantic and Indian Oceans and to derive tide-related parameters for Delaware Bay. By interpreting space shuttle photographs taken during mission STS-40, a total of 34 internal wave packets on the continental shelf of the Middle Atlantic Bight have been recognized. Using the finite-depth theory we derived that the maximum amplitude of solitons is 5.6 m, the phase speed 0.42 m/s, and the period 23.8 min. Deep-ocean internal waves in the western equatorial Indian Ocean on photographs taken during mission STS-44 were also interpreted and analyzed. The internal waves occurred in the form of a multisoliton packet in which there are about a dozen solitons. The average wavelength of the solitons is 1.8 /- 0.5 km. The crest lines are mostly straight and reach as long as 100 km. The distance between two adjacent packets is about 66 km. Using the deepwater soliton theory, we derived that the mean amplitude of the solitons is 25 m, the nonlinear phase speed 1.7 m/s, and the average period 18 min. For both cases, the semidiural tides are the principal generating mechanism. The tide-related parameters of Delaware Bay were derived from space shuttle time-series photographs taken during mission STS-40. The water area in the bay were measured from interpretation maps of the photographs. The corresponding tidal levels were calculated using the exposure time. From these data, an approximate function relating the water area to the tidal level at a reference point was determined. Then, the water areas of the Delaware Bay at mean high water (MHW) and mean low water (MLW), below 0 m, for the tidal zone, and the tidal flux were inferred. All parameters derived were reasonable and compared well with results of previous investigations.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号