首页> 美国政府科技报告 >Applying Space Technology to Enhance Control of an Artificial Arm
【24h】

Applying Space Technology to Enhance Control of an Artificial Arm

机译:应用空间技术加强人工手臂的控制

获取原文

摘要

To better understand the limitations of the current single-function prostheses and the needs of the individuals who use them, The Institute for Rehabilitation and Research (TIRR), sponsored by the National Institutes of Health (August 1992 - November 1994), surveyed approximately 2500 individuals with upper limb loss. When asked to identify specific features of their current electric prosthesis that needed improvement, the survey respondents overwhelmingly identified the lack of wrist and finger movement as well as poor control capability. Robotics researchers at NASA's Johnson Space Center (JSC) and Rice University have made substantial progress in myoelectric teleoperation. A myoelectric teleoperation system translates signals generated by an able-bodied robot operator's muscles during hand motions into commands that drive a robot's hand through identical motions. Genetic programming (GP) is an evolutionary programming method where the computer can modify the discriminating functions' form to improve its performance, not just adjust numerical coefficients or weights. Although the function development may require much computational time and many training cases, the resulting discrimination functions can run in realtime on modest computers. These results suggest that myoelectric signals might be a feasible teleoperation medium, allowing an operator to use his or her own hand and arm as a master to intuitively control an anthropomorphic robot in a remote location such as outer space.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号