首页> 美国政府科技报告 >Liquid Methane/Liquid Oxygen Injectors for Potential Future Mars Ascent Engines
【24h】

Liquid Methane/Liquid Oxygen Injectors for Potential Future Mars Ascent Engines

机译:液体甲烷/液氧注射器用于潜在的未来火星上升发动机

获取原文

摘要

Preliminary mission studies for human exploration of Mars have been performed at Marshall Space Flight Center (MSFC). These studies indicate that for chemical rockets only a cryogenic propulsion system would provide high enough performance to be considered for a Mars ascent vehicle. Although the mission is possible with Earth-supplied propellants for this vehicle, utilization of in-situ propellants is highly attractive. This option would significantly reduce the overall mass of launch vehicles. Consequently, the cost of the mission would be greatly reduced because the number and size of the Earth launch vehicle(s) needed for the mission would decrease. NASA/Johnson Space Center has initiated several concept studies of in-situ propellant production plants. Liquid oxygen (LOX) is the primary candidate for an in-situ oxidizer. In-situ fuel candidates include methane (CH4), ethylene (C2H4), and methanol (CH3OH). MSFC initiated a technology development program for a cryogenic propulsion system for the Mars human exploration mission in 1998. One part of this technology program is the effort described here: an evaluation of propellant injection concepts for a LOX/liquid methane Mars Ascent Engine (MAE) with an emphasis on light-weight, high efficiency, reliability, and thermal compatibility. In addition to the main objective, hot-fire tests of the subject injectors will be used to test other key technologies including light-weight combustion chamber materials and advanced ignition concepts. This paper will address the results of the liquid methane/LOX injector study conducted at MSFC. A total of four impinging injector configurations were tested under combustion conditions in a modular combustor test article (MCTA), equipped with optically accessible windows. A series of forty hot-fire tests, which covered a wide range of engine operating conditions with the chamber pressure varied from 320 to 510 and the mixture ratio from 1.5 to 3.5, were performed. The test matrix also included a variation in the combustion chamber length for the purpose of investigating its effects on the combustion performance and stability.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号