首页> 美国政府科技报告 >Satellite Remote Sensing Studies of Biological and Biogeochemical Processing in the Ocean
【24h】

Satellite Remote Sensing Studies of Biological and Biogeochemical Processing in the Ocean

机译:海洋生物和生物地球化学处理的卫星遥感研究

获取原文

摘要

The remote sensing of phycoerythrin-containing phytoplankton by ocean color was evaluated. Phycoerythrin (PE) can be remotely sensed by three methods: surface reflectance (Sathyendranath et al. 1994), by laser-activated fluorescence (Hoge and Swift 1986) and by passive fluorescence (Letelier et al. 1996). In collaboration with Dr. Frank Hoge and Robert Swift during Dr. Maria Vernet's tenure as Senior Visiting Scientist at Wallops Island, the active and passive methods were studied, in particular the detection of PE fluorescence and spectral reflectance from airborne LIDAR (AOL). Airborne instrumentation allows for more detailed and flexible sampling of the ocean surface than satellites thus providing the ideal platform to test model and develop algorithms than can later be applied to ocean color by satellites such as TERRA and AQUA. Dr. Vernet's contribution to the Wallops team included determination of PE in the water column, in conjunction with AOL flights in the North Atlantic Bight. In addition, a new flow-through fluorometer for PE determination by fluorescence was tested and calibrated. Results: several goals were achieved during this period. Cruises to the California Current, North Atlantic Bight, Gulf of Maine and Chesapeake Bay provided sampling under different oceanographic and optical conditions. The ships carried the flow-through fluorometer and samples for the determination of PE were obtained from the flow-through flow. The AOL was flown over the ship's track, usually several flights during the cruise, weather permitting.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号