首页> 美国政府科技报告 >Numerical Simulation of Screech Tones from Supersonic Jets: Physics and Prediction
【24h】

Numerical Simulation of Screech Tones from Supersonic Jets: Physics and Prediction

机译:超音速喷射器尖叫声的数值模拟:物理与预测

获取原文

摘要

The objectives of this project are to: (1) perform a numerical simulation of the jet screech phenomenon; and (2) use the data of the simulations to obtain a better understanding of the physics of jet screech. The original grant period was for three years. This was extended at no cost for an extra year to allow the principal investigator time to publish the results. We would like to report that our research work and results (supported by this grant) have fulfilled both objectives of the grant. The following is a summary of the important accomplishments: (1) We have now demonstrated that it is possible to perform accurate numerical simulations of the jet screech phenomenon. Both the axisymmetric case and the fully three-dimensional case were carried out successfully. It is worthwhile to note that this is the first time the screech tone phenomenon has been successfully simulated numerically; (2) All four screech modes were reproduced in the simulation. The computed screech frequencies and intensities were in good agreement with the NASA Langley Research Center data; (3) The staging phenomenon was reproduced in the simulation; (4) The effects of nozzle lip thickness and jet temperature were studied. Simulated tone frequencies at various nozzle lip thickness and jet temperature were found to agree well with experiments; (5) The simulated data were used to explain, for the first time, why there are two axisymmetric screech modes and two helical/flapping screech modes; (6) The simulated data were used to show that when two tones are observed, they co-exist rather than switching from one mode to the other, back and forth, as some previous investigators have suggested; and (7) Some resources of the grant were used to support the development of new computational aeroacoustics (CAA) methodology. (Our screech tone simulations have benefited because of the availability of these improved methods.)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号