首页> 美国政府科技报告 >Microphysical Timescales in Clouds and their Application in Cloud-Resolving Modeling
【24h】

Microphysical Timescales in Clouds and their Application in Cloud-Resolving Modeling

机译:云中的微物理时间尺度及其在云分解建模中的应用

获取原文

摘要

Computational phenomena (i.e., spurious supersaturation and negative mixing ratio of cloud water) usually exist in cloud-resolving models when the time step for explicit integration is larger than a microphysical timescale in clouds. In this paper, the microphysical timescales in clouds are studied, showing that the timescale of water vapor condensation (or cloud water evaporation) is smaller than 10 s - the order of a typical time step for cloud-resolving models. To avoid spurious computational phenomena in cloud-resolving modeling, it is suggested that moist entropy be used as a prognostic thermodynamic variable, and temperature be diagnosed from that and other prognostic variables. A simple numerical model with moist entropy as a prognostic variable, for example, is presented to show that spurious computational phenomena are removed when moist entropy is used as a prognostic variable.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号