首页> 美国政府科技报告 >Nonlinear Oscillations and Flow of Gas Within Closed and Open Conical Resonators
【24h】

Nonlinear Oscillations and Flow of Gas Within Closed and Open Conical Resonators

机译:闭合和开放式锥形谐振器内的非线性振动和气体流动

获取原文

摘要

A dissonant acoustic resonator with a conical shaped cavity was tested in four configurations: (A) baseline resonator with closed ends and no blockage; (B) closed resonator with internal blockage; (C) ventilated resonator with no blockage; and (D) ventilated resonator with an applied pressure differential. These tests were conducted to investigate the effects of blockage and ventilation holes on dynamic pressurization. Additionally, the investigation was to determine the ability of acoustic pressurization to impede flow through the resonator. In each of the configurations studied, the entire resonator was oscillated at the gas resonant frequency while dynamic pressure, static pressure, and temperature of the fluid were measured. In the final configuration, flow through the resonator was recorded for three oscillation conditions. Ambient condition air was used as the working fluid. The baseline results showed a marked reduction in the amplitude of the dynamic pressure waveforms over previously published studies due to the use of air instead of refrigerant as the working fluid. A change in the resonant frequency was recorded when blockages of differing geometries were used in the closed resonator, while acoustic pressure amplitudes were reduced from baseline measurements. A sharp reduction in the amplitude of the acoustic pressure waves was expected and recorded when ventilation ports were added. With elevated pressure applied to one end of the resonator, flow was reduced by oscillating the cavity at the fluid fundamental resonant frequency compared to cases without oscillation and oscillation off-resonance.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号