首页> 美国政府科技报告 >Nonlinear Acoustics Used To Reduce Leakage Flow.
【24h】

Nonlinear Acoustics Used To Reduce Leakage Flow.

机译:非线性声学用于减少泄漏流量。

获取原文

摘要

Leakage and wear are two fundamental problems in all traditional turbine seals that contribute to an engine's inefficiency. The solutions to seal leakage and wear conflict in the conventional design space. Reducing the clearance between the seal and rotating shaft reduces leakage but increases wear because of increased contact incidents. Increasing the clearance to reduce the contact between parts reduces wear but increases parasitic leakage. The goal of this effort is to develop a seal that restricts leakage flow using acoustic pressure while operating in a noncontacting manner, thereby increasing life. In 1996, Dr. Timothy Lucas announced his discovery of a method to produce shock-free high-amplitude pressure waves. For the first time, the formation of large acoustic pressures was possible using dissonant resonators. A pre-prototype acoustic seal developed at the NASA Glenn Research Center exploits this fundamental acoustic discovery: a specially shaped cavity oscillated at the contained fluid's resonant frequency produces high-amplitude acoustic pressure waves of a magnitude approaching those required of today's seals. While the original researchers are continuing their development of acoustic pumps, refrigeration compressors, and electronic thermal management systems using this technology, the goal of researchers at Glenn is to apply these acoustic principles to a revolutionary sealing device. When the acoustic resonator shape is optimized for the sealing device, the flow from a high-pressure cavity to a low-pressure cavity will be restricted by a series of high-amplitude standing pressure waves of higher pressure than the pressure to be sealed. Since the sealing resonator cavity will not touch the adjacent sealing structures, seal wear will be eliminated, improving system life. Under a cooperative agreement between Glenn and the Ohio Aerospace Institute (OAI), an acoustic-based pre-prototype seal was demonstrated for the first time. A pressurized cavity was attached to one end of the resonator while the other end remained open to ambient pressure. Measurements were taken at several values of applied pressure with the assembly stationary, oscillated at an off-resonance frequency, and then oscillated on-resonance. The three cases show that the flow through the conical resonator can be reduced by oscillating the resonator at the resonance frequency of the air contained within the cavity. The results are currently being compared with results obtained from a commercial computational fluid dynamics code. The objective is to improve the design through numerical simulation before fabricating a next-generation prototype sealing device. Future work is aimed at implementing acoustic seal design improvements to further reduce the leakage flow rate through the device and at reducing the device's overall size.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号