首页> 外文学位 >Reduced Order Model-Based Prediction of the Nonlinear Geometric Response of a Panel Under Thermal, Aerodynamic, and Acoustic Loads.
【24h】

Reduced Order Model-Based Prediction of the Nonlinear Geometric Response of a Panel Under Thermal, Aerodynamic, and Acoustic Loads.

机译:基于降阶模型的面板在热,空气动力和声载荷下的非线性几何响应预测。

获取原文
获取原文并翻译 | 示例

摘要

This paper addresses some aspects of the development of fully coupled thermal-structural reduced order modeling of planned hypersonic vehicles. A general framework for the construction of the structural and thermal basis is presented and demonstrated on a representative panel considered in prior investigations. The thermal reduced order model is first developed using basis functions derived from appropriate conduction eigenvalue problems. The modal amplitudes are the solution of the governing equation, which is nonlinear due to the presence of radiation and temperature dependent capacitance and conductance matrices, and the predicted displacement field is validated using published data. A structural reduced order model was developed by first selecting normal modes of the system and then constructing associated dual modes for the capturing of nonlinear inplane displacements. This isothermal model was validated by comparison with full finite element results (Nastran) in static and dynamic loading environments. The coupling of this nonlinear structural reduced order model with the thermal reduced order model is next considered. Displacement-induced thermal modes are constructed in order to account for the effect that structural deflections will have on the thermal problem. This coupling also requires the enrichment of the structural basis to model the elastic deformations that may be produced consistently with the thermal reduced order model. The validation of the combined structural-thermal reduced order model is carried out with pure mechanical loads, pure thermal loads, and combined mechanical-thermal excitations. Such comparisons are performed here on static solutions with temperature increases up to 2200F and pressures up to 3 psi for which the maximum displacements are of the order of 3 thicknesses. The reduced order model predicted results agree well with the full order finite element predictions in all of these various cases. A fully coupled analysis was performed in which the solution of the structural-thermal-aerodynamic reduced order model was carried out for 300 seconds and validated against a full order model. Finally, a reduced order model of a thin, aluminum beam is extended to include linear variations with local temperature of the elasticity tensor and coefficients of thermal expansion.
机译:本文讨论了计划中的超音速飞行器的全耦合热结构降阶建模的开发的某些方面。在先前研究中考虑过的代表性小组中,提出并展示了构造结构和热学基础的一般框架。首先使用从适当的传导特征值问题得出的基函数来开发热降阶模型。模态振幅是控制方程的解,由于存在辐射和温度相关的电容和电导矩阵,该方程是非线性的,并且使用公开的数据验证了预测的位移场。通过首先选择系统的正常模式,然后构造关联的双模式以捕获非线性平面内位移,来开发结构化降阶模型。通过与静态和动态加载环境中的完整有限元结果(Nastran)进行比较,验证了该等温模型。接下来考虑该非线性结构降阶模型与热降阶模型的耦合。构造位移引起的热模,以便考虑结构变形对热问题的影响。这种耦合还需要丰富的结构基础,以对可能与热降阶模型一致产生的弹性变形进行建模。结合结构热-降阶模型的验证是在纯机械载荷,纯热载荷和组合机械-热激励下进行的。这种比较是在静态解决方案中进行的,这些静态解决方案的温度升高到2200°F,压力升高到3 psi,最大位移大约是3厚度。在所有这些情况下,降阶模型的预测结果与全阶有限元预测非常吻合。进行了完全耦合分析,其中对结构热空气动力学降阶模型的求解进行了300秒,并针对全阶模型进行了验证。最后,将薄铝梁的降阶模型扩展为包括随弹性张量局部温度和热膨胀系数而变化的线性变化。

著录项

  • 作者

    Matney, Andrew.;

  • 作者单位

    Arizona State University.;

  • 授予单位 Arizona State University.;
  • 学科 Aerospace engineering.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 140 p.
  • 总页数 140
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:53:34

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号