首页> 美国政府科技报告 >Second-generation PFBC systems research and development: Phase 2, Best efficiency approach in light of current data.
【24h】

Second-generation PFBC systems research and development: Phase 2, Best efficiency approach in light of current data.

机译:第二代pFBC系统研究与开发:第2阶段,根据当前数据采用最佳效率方法。

获取原文

摘要

The low-Btu gas is produced in the carbonizer by pyrolysis/mild devolatilization of coal in a fluidized bed reactor. Because this unit operates at temperatures much lower than gasifiers currently under development, it also produces char residue. Left untreated, the fuel gas will contain hydrogen sulfide and sulfur-containing tar/light oil vapors; therefore, lime-based sorbents are injected into the carbonizer to catalytically enhance tar cracking and to capture sulfur as calcium sulfide. Sulfur is captured in situ, and the raw fuel gas is fired hot. Thus expensive, complex, fuel gas heat exchangers and chemical or sulfur-capturing bed cleanup systems that are part of the coal gasification combined-cycle plants now being developed are eliminated. The char and calcium sulfide produced in the carbonizer and contained in the fuel gas as elutriated particles are captured by high-temperature filters, rendering the fuel gas essentially particulate-free and able to meet New Source Performance Standards (NSPS). The captured material, with carbonizer bed drains, is collected in a central hopper and injected into the CPFBC through a nitrogen-aerated non-mechanical valve. The high excess air in the combustor transforms the calcium sulfide to sulfate, allowing its disposal with the normal CPFBC spent sorbent. In the CPFBC, the burning char heats the high-excess-air flue gas to 1600(degree)F; any surplus heat is transferred to the FBHE by the recirculation of solids (sorbent and coal fly ash) between the two units. Controlled recirculation is accomplished with cyclone separators and non-mechanical valves. The FBHE contains tube surfaces that cool the circulating solids. Because of the low fluidizing velocity in the FBHE ((le) 1/2 ft/s), the risk of tube erosion is virtually eliminated.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号