首页> 美国政府科技报告 >Phase transitions and gravitational collapse
【24h】

Phase transitions and gravitational collapse

机译:相变和重力崩溃

获取原文

摘要

Results are presented for numerical calculations of gravitational collapses and explosions. Two effects are studied. The first involves aspects of the numerical models used in almost all current gravitational collapse calculations. The second involves phase transitions in the equation of state of dense matter. A (1 + 1) dimensional general relativistic hydrodynamics code was constructed to investigate both effects. A modification of standard artificial viscosity methods was developed. This extended both the tensor artificial viscosity formulation and the artificial heat conduction formulation to the general relativistic regime. This method shows better results for collapse calculations than the standard scalar artificial viscosity. Numerical collapse calculations were also examined with respect to the number of zones used in the model. These calculations suggest that the number of zones used in current supernova calculations may be insufficient, and that the more sophisticated artificial viscosity methods used may be useful in future core collapse investigations. The second effect studied by this thesis is the impact of phase transitions in dense matter on the results of core collapse in Type 2 supernovae. Two different phase transitions were investigated. The QCD phase transition embodies the prediction of quantum chromodynamics that at high density the constituents of baryonic matter will be free quarks and gluons. The effects on the shock wave formed by core collapse and bounce is studied for various phase transitions. We find that some of the phase transitions modeled significantly increase the shock strength.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号