首页> 美国政府科技报告 >Development of the average lattice phase-strain and global elastic macro-strain in Al/TiC composites
【24h】

Development of the average lattice phase-strain and global elastic macro-strain in Al/TiC composites

机译:al / TiC复合材料中平均晶格相应变和全局弹性宏观应变的发展

获取原文

摘要

The development of elastic lattice phase strains and global elastic macro-strain in a 15 vol% TiC particle reinforced 2219-T6 Al composite was modeled by finite element method (FEM) as a function of tensile uniaxial loading. The numerical predictions are in excellent agreement with strain measurements at a spallation neutron source. Results from the measurements and modeling indicate that the lattice phase-strains go through a ''zigzag'' increase with the applied load in the direction perpendicular to the load, while the changes of slope in the parallel direction are monotonic. FEM results further showed that it is essential to consider the effect of thermal residual stresses (TRS) in understanding this anomalous behavior. It was demonstrated that, due to TRS, the site of matrix plastic flow initiation changed. On the other hand, the changes of slope of the elastic global macrostrain is solely determined by the phase-stress partition in the composite. An analytical calculation showed that both experimental and numerical slope changes during elastic global strain response under loading could be accurately reproduced by accounting for the changes of phase-stress ratio between the matrix and the matrix.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号