首页> 美国政府科技报告 >Geometrical modelling and calibration of video cameras for underwater navigation
【24h】

Geometrical modelling and calibration of video cameras for underwater navigation

机译:用于水下导航的摄像机的几何建模和校准

获取原文

摘要

Video cameras and other visual sensors can provide valuable navigation information for underwater remotely operated vehicles. The thesis relates to the geometric modeling and calibration of video cameras. This dissertation proposes a new geometric camera model, where linear image plane distortion (difference in scale and lack of orthogonality between the image axes) is compensated for after, and separately from, lens distortion. The new model can be viewed as an extension of the linear or DLT (Direct Linear Transformation) model and as a modification of the model traditionally used in photogrammetry. The new model can be calibrated from both planar and nonplanar calibration objects. The feasibility of the model is demonstrated in a typical camera calibration experiment, which indicates that the new model is more accurate than the traditional one. It also gives a simple solution to the problem of computing undistorted image coordinates from distorted ones. Further, the dissertation suggests how to get initial estimates for all the camera model parameters, how to select the number of parameters modeling lens distortion and how to reduce the dimension of the search space in the nonlinear optimization. There is also a discussion on the use of analytical partial derivates. The new model is particularly well suited for video images with non-square pixels, but it may also be used with professional photogrammetric equipment. 63 refs., 11 figs., 6 tabs.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号