首页> 美国政府科技报告 >Monitoring Delamination of Thermal Barrier Coatings During Interrupted High-Heat-Flux Laser Testing using Luminescence Imaging
【24h】

Monitoring Delamination of Thermal Barrier Coatings During Interrupted High-Heat-Flux Laser Testing using Luminescence Imaging

机译:使用发光成像监测中断高热通量激光测试期间热障涂层的分层

获取原文

摘要

This presentation showed progress made in extending luminescence-base delamination monitoring to TBCs exposed to high heat fluxes, which is an environment that much better simulates actual turbine engine conditions. This was done by performing upconversion luminescence imaging during interruptions in laser testing, where a high-power CO2 laser was employed to create the desired heat flux. Upconverison luminescence refers to luminescence where the emission is at a higher energy (shorter wavelength) than the excitation. Since there will be negligible background emission at higher energies than the excitation, this methods produces superb contrast. Delamination contrast is produced because both the excitation and emission wavelengths are reflected at delamination cracks so that substantially higher luminescence intensity is observed in regions containing delamination cracks. Erbium was selected as the dopant for luminescence specifically because it exhibits upconversion luminescence. The high power CO2 10.6 micron wavelength laser facility at NASA GRC was used to produce the heat flux in combination with forced air backside cooling. Testing was performed at a lower (95 W/sq cm) and higher (125 W/sq cm) heat flux as well as furnace cycling at 1163C for comparison. The lower heat flux showed the same general behavior as furnace cycling, a gradual, "spotty" increase in luminescence associated with debond progression; however, a significant difference was a pronounced incubation period followed by acceleration delamination progression. These results indicate that extrapolating behavior from furnace cycling measurements will grossly overestimate remaining life under high heat flux conditions. The higher heat flux results were not only accelerated, but much different in character. Extreme bond coat rumpling occurred, and delamination propagation extended over much larger areas before precipitating macroscopic TBC failure. This indicates that under the higher heat flux (and surface & interface temperatures), the TBC was more tolerant of damage. The main conclusions were that high heat flux conditions can not only accelerate TBC debond progression but can also grossly alter the pathway of delamination.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号