首页> 美国政府科技报告 >Surface-Roughness Induced Residual Stresses in Thermal Barrier Coatings: Computer Simulations
【24h】

Surface-Roughness Induced Residual Stresses in Thermal Barrier Coatings: Computer Simulations

机译:表面粗糙度引起热障涂层的残余应力:计算机模拟

获取原文

摘要

Adherence of plasma-sprayed thermal barrier coatings (TBC'S) is strongly dependent on mechanical interlocking at the interface between the ceramic coating and the underlying metallic bond coat. Typically, a rough bond-coat surface topology is required to achieve adequate mechanical bonding. However, the resultant interfacial asperities modify the residual stresses that develop in the coating system due to thermal expansion differences, and other misfit strains, and generate stresses that can induce progressive fracture and eventual spallation of the ceramic coating. For a flat interface the principal residual stress is parallel to the interface as the stress normal to the interface is zero. However, the residual stress normal to the interface becomes non-zero, when the interface has the required interlocking morphology. In the present study, an actual microstructure of a plasma-sprayed TBC system was numerically simulated and analyzed with a recently developed, object-oriented finite element analysis program, OOF, to give an estimate of the localized residual stresses in a TBC system. Additionally, model TBC rnicrostructures were examined to evaluate the manner in which the topology of interfacial asperities influences residual stresses. Results are present for several scenarios of modifying interfacial roughness.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号