首页> 美国政府科技报告 >Saturation of impurity-rich phases in a cerium-substituted pyrochlore-rich titanate ceramic: part 1 experimental results
【24h】

Saturation of impurity-rich phases in a cerium-substituted pyrochlore-rich titanate ceramic: part 1 experimental results

机译:在富含铈的烧绿石的钛酸盐陶瓷中富含杂质的相的饱和度:第1部分实验结果

获取原文

摘要

The saturation of impurity-rich accessory phases in a Ce-analog baseline ceramic formulation for the immobilization of excess plutonium has been tested by synthesizing an impurity-rich baseline compositions at 1300 C, 1350 C, and 1400 C in air. Impurity oxides are added at the 10 wt% level. The resulting phases assemblages are typically rich in pyrochlore, Hf-zirconolite (hafnolite), brannerite and rutile, but in many instances also contain an accessory mineral enriched in the impurity oxide. The concentration of that oxide in coexisting pyrochlore sets the saturation limit for solid solution of the component in question. In most cases, the accessory phase does not contain significant amounts of Ce, Gd or U. Exceptions are the stabilization of a Ca-lanthanide phosphate and a phosphate glass when P{sub 2}O{sub 5} is added to the formulation. P{sub 2}O{sub 5} addition is also very effective in reducing the modal amount of pyrochlore in the form relative to brannerite. Addition of the sodium-aluminosilicate, NaAlSiO{sub 4}, also results in the formation of a grain boundary melt at run conditions, but the fate of this phase on cooling is not well determined. At temperatures above 1300 C, addition of 10 wt% Fe{sub 2}O{sub 3} also leads to melting. Substitution of cations of different valences can also be associated with model-dependent changes in the oxidation state of uranium via charge transfer reactions. A set of simple components is suggested for the description of pyrochlores in both impurity-free and impurity-rich formulations.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号