首页> 美国政府科技报告 >Effect of Acute Exposure to Hypergravity (Gx vs. Gz) on Dynamic Cerebral Autoregulation
【24h】

Effect of Acute Exposure to Hypergravity (Gx vs. Gz) on Dynamic Cerebral Autoregulation

机译:急性重力超重(Gx vs. Gz)对动态脑自动调节的影响

获取原文

摘要

We examined the effects of 30 min of exposure to either +3G(sub x) or +3G(sub z) centrifugation on cerebrovascular responses to 800 head-up tilt (HUT) in 14 healthy individuals. Both before and after +3G(sub x) or +3G(sub z) centrifugation, eye-level blood pressure (BP(sub eye)), end tidal CO2 (P(sub ET)CO2), mean cerebral flow velocity (CFV) in the middle cerebral artery (trans cranial Doppler ultrasound), cerebral vascular resistance (CVR) and dynamic cerebral autoregulatory gain (GAIN) were measured with subjects in the supine position and during subsequent 800 HUT for 30 min. Mean BP(sub eye) decreased with HUT in both the G(sub x) (n= 7) and G(sub z) (n=7) groups (P less than 0.00l), with the decrease being greater after centrifugation only in the G(sub z) group (P less than 0.05). P(sub ET)CO2 also decreased with HUT in both groups (P less than 0.0l), but the absolute level of decrease was unaffected by centrifugation. CFV decreased during HUT more significantly after than before centrifugation in both groups (P less than 0.02). However, these greater decreases were not associated with greater increases in CVR. In the supine position after compared to before centrifugation, GAIN increased in both groups (P less than 0.05, suggesting an autoregulatory deficit), with the change being correlated to a measure of otolith function (the linear vestibulo-ocular reflex) in the G(sub x) group (R=0.76, P less than 0.05) but not in the G(sub z) group (R=0.24, P=0.60). However, GAIN was subsequently restored to pre-centrifugation levels during post-centrifugation HUT (i.e., as BP(sub eye) decreased), suggesting that both types of centrifugation resulted in a leftward shift of the cerebral autoregulation curve. We speculate that this leftward shift may have been due to vestibular activation (especially during +G(sub x)) or potentially to an adaptation to reduced cerebral perfusion pressure during +G(sub z).

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号