首页> 美国政府科技报告 >Vector network analyzer techniques to measure WR340 waveguide windows.
【24h】

Vector network analyzer techniques to measure WR340 waveguide windows.

机译:矢量网络分析仪技术测量WR340波导窗口。

获取原文

摘要

In its fundamental form, network analysis involves the measurement of incident, reflected, and transmitted waves that travel along transmission lines. Measuring both magnitude and phase of components is important for several reasons. First, both measurements are required to fully characterize a linear network and ensure distortion-free transmission. To design effective matching networks, complex impedances must be measured. In the development of computer-aided-design (CAD) circuit simulation programs, magnitude and phase data are required for accurate models. In addition, time-domain characterization requires magnitude and phase information in order to perform an inverse Fourier transform [1]. To acquire accurate data using network analyzers special care must be taken when performing calibrations and measurements. Various calibrations and measurement techniques using a vector network analyzer (HP8510C) will be discussed. The design of a WR340 waveguide rf window will be used as an example for explaining some of these techniques. A major problem encountered when making network measurements is the need to separate the effects of the transmission medium from the device characteristics. While it is advantageous to be able to predict how a device will behave in the environment of its final application, it can be difficult to measure this way. In most microwave measurements, systematic errors are the most significant source of measurement uncertainty. Systematic errors are caused by imperfections in the test equipment and test setup. If these errors do not vary over time, they can be characterized through calibration and mathematically removed during the measurement process [2]. The process of removing systematic errors from the network analyzer S-parameter measurement is called ''measurement calibration.''

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号