首页> 美国政府科技报告 >Double-grid method for modeling microstructure evolution.
【24h】

Double-grid method for modeling microstructure evolution.

机译:用于建模微观结构演化的双网格方法。

获取原文

摘要

The microstructure of materials, i.e. the size, shape and arrangement of grains, determines essentially the material properties such as mechanical strength, toughness, electrical conductivity and magnetic susceptibility. In general the desirable property of materials can be controlled and improved by understanding of microstructure evolution processes in grain growth controlled by grain boundary migration, and grain boundary diffusion. The process of grain growth involves both grain boundary migration (moving interfaces) and topological changes of grain boundary geometry, and it can not be effectively modeled by Lagrangian, Eulerian, or Arbitrary Lagrangian Eulerian finite element method when in addition the stress effect is considered. A double-grid method is proposed for modeling grain boundary migration under stress. In this approach, the material grid carries kinematic and kinetic material variables, whereas the grain boundary grid carries only grain boundary kinematic variables. The material domain is discretized by a reproducing kernel approximation with strain discontinuity enrichment across the grain boundaries. The grain boundaries, on the other hand, are discretized by the standard finite elements. This approach allows modeling of arbitrary evolution of grain boundaries without remeshing.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号