首页> 美国政府科技报告 >P3 microengine development at Washington State University.
【24h】

P3 microengine development at Washington State University.

机译:华盛顿州立大学的p3微引擎开发。

获取原文

摘要

There is a pressing need for miniaturized power systems for a variety of applications requiring a long life in the field of operations. Such power systems are required to be capable of providing power for months to years of operation, which all but eliminates battery technologies and technologies that bring their own fuel systems (except for nuclear fuel systems, which have their own drawbacks) due to constraints of having the all of the chemical fuel necessary for the entire life of the operational run available at the starting point of the operation. Alternatively, harvesting energy directly from the local environment obviates this need for bringing along all of the fuel necessary for operation. Instead, locally available energy, either in the form of chemical, thermal, light, or motion can be harvested and converted into electrical energy for use in sensor applications. The work from this LDRD is focused on developing a thermal engine that can take scavenged thermal gradients and convert them into direct electrical energy. The converter system is a MEMS based external combustion engine that uses a modified Stirling cycle to generate mechanical work on a piezoelectric generator. This piezoelectric generator then produced an AC voltage and current that can be delivered into an external load. The MEMS engine works on the conversion of a two phase working fluid trapped between two deformable membranes. As heat is added to the system, the liquid working fluid is converted to a gas, which exerts pneumatic pressure on the membranes, expanding them outward. This outward expansion continues after the heat input is removed when the engine is operated at resonance, since the membrane is expanded further due to inertial forces. Finally, the engine cools and heat rejection is accomplished through the membranes, closing the thermodynamic cycle. A piezoelectric generator stack is deposited on one of the membranes, and this generator extracts the strain energy work from the membrane expansion and generates electrical work. The overall system is pulsed by an electrical heater to generate the input heat pulse. Currently, the system has a resonant frequency that is in the low kilohertz regime, but operations under a dynamic damping have demonstrated operation at resonance and the existence of an open mechanical cycle of heat addition, expansion, and heat rejection. Power generation of direct thermal-to-electrical conversion show a 1.45W, 6mJ heat pulse can generate a 0.8 {micro}W power output pulse, and continuous operation generates a sustained power output of 0.8 {micro}W at 240Hz. Future improvements in the device will allow active heat rejection, allowing resonance with external damping to improve the thermal to electrical power efficiency.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号