首页> 美国政府科技报告 >General Class of Nonlinear Bifurcation Problems from a Point in the Essential Spectrum: Application to Shock Wave Solutions of Kinetic Equations
【24h】

General Class of Nonlinear Bifurcation Problems from a Point in the Essential Spectrum: Application to Shock Wave Solutions of Kinetic Equations

机译:一类点非线性分岔问题的一般类型 - 动力学方程的激波解

获取原文

摘要

An abstract class of bifurcation problems is investigated from the essential spectrum of the associated Frechet derivative. This class is a very general framework for the theory of one-dimensional, steady-profile traveling- shock-wave solutions to a wide family of kinetic integro-differential equations from nonequilibrium statistical mechanics. Such integro-differential equations usually admit the Navier--Stokes system of compressible gas dynamics or the MHD systems in plasma dynamics as a singular limit, and exhibit similar viscous shock layer solutions. The mathematical methods associated with systems of partial differential equations must, however, be replaced by the considerably more complex Bifurcation Theory setting. A hierarchy of bifurcation problems is considered, starting with a simple bifurcation problem from a simple eigenvalue. Sections are entitled as follows: introduction and background from mechanics; the mathematical problem: principal results; a generalized operational calculus, and the derivation of the generalized Lyapunov--Schmidt equations; and methods of solution for the Lyapunov--Schmidt and the functional differential equations. 1 figure. (ERA citation 02:046913)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号