首页> 美国政府科技报告 >Simulation of Flame Acceleration in Unconfined Vapour Cloud Explosions
【24h】

Simulation of Flame Acceleration in Unconfined Vapour Cloud Explosions

机译:无侧限蒸汽云爆炸中火焰加速的模拟

获取原文

摘要

The goal of this work was to investigate the feasibility of numerical simulation in accident and safety analysis of unconfined vapour cloud explosions and whether it is possible to simulate the flame acceleration phenomen based on the published data of experiments. Two vapour cloud explosion experiments reported in the literature have been simulated with the PHOENICS-code. The flame acceleration, which was mainly due to the enhanced combustion from turbulence generation at obstacles in the flow regime, could be simulated. The computation gave correct order of magnitude for the maximum overpressure in both explosions, of which one was weak and the other strong. The differences between the computed results and experiments are discussed and suggestions how to improve the simulation model are given. Generally, more simulations of explosions and detailed experimental information of the initial conditions and development of the explosions are needed before simulations can reliably be used in accident and safety analysis. (ERA citation 11:017214)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号