首页> 美国政府科技报告 >Formation of Submicron Metastable Phase Structures in Alloys with Focused Electron or Proton BEAMS
【24h】

Formation of Submicron Metastable Phase Structures in Alloys with Focused Electron or Proton BEAMS

机译:聚焦电子或质子BEams合金中亚微米亚稳相结构的形成

获取原文

摘要

Recent theoretical and experimental studies of radiation-induced segregation in alloys under irradiation with focused charged-particle beams have shown that point-defect currents generated by axial and radial displacement-rate gradients can cause significant redistribution of the alloying elements within the irradiated zone. In the case of irradiation of thin films with highly-focused electron beams, two important features have been established experimentally: (1) the diameter of the local region in which the alloy composition and phase are modified is practically equal to the beam diameter, and (2) the time required to produce a given change in the alloy composition in the center of the irradiated zone decreases rapidly with beam diameter. Our theoretical modeling indicates that these features will also be observed in semi-infinite alloys bombarded with focused proton beams. However, in this case, the spatially-nonuniform defect production in both the axial and radial directions renders the compositional redistribution more complex. The present work shows that the ability to locally modify the alloy composition by focused electron or proton beams may offer a new method for producing local regions of controlled composition and microstructure on a submicron scale. The results of our model calculations and experimental studies will be presented to demonstrate the feasibility of this novel technique. (ERA citation 12:016261)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号