首页> 美国政府科技报告 >Nutrient Recovery of Plant Leachates Under Thermal, Biological, and Photocatalytic Pretreatments.
【24h】

Nutrient Recovery of Plant Leachates Under Thermal, Biological, and Photocatalytic Pretreatments.

机译:植物渗滤液在热,生物和光催化预处理下的养分回收。

获取原文

摘要

Nutrient recovery has always been a problem for long distance and long-term space missions. To allow humans to man these missions, a steady source of oxygen, water, and food are necessary for survival beyond Earth's atmosphere. Plants are currently an area of interest since they are capable of providing all three resources for life sustainability. We are currently interested in nutrient recovery for future plant growth and simple aqueous leachate extractions can recover some of the nutrients. However, leaching plants also removes water-soluble organic plant wastes, which inhibits plant growth if not separated properly. To combat the issues with waste and maximize nutrient recovery, we are attempting to pre-treat the plant matter using biological, thermal, and photocatalytic methods before subjecting the solution with variable-strength acid digestion. For the biological method, the inoculums: mixed heterotrophic/nitrifying bioreactor effluent and Trichoderma vessei are used in an attempt to liberate more nutrients from the plant matter. For the thermal method, plants are subjected to varying temperatures at different retention times to determine nutrient recovery. Lastly, the photocatalytic method utilizes TiO (sub 2)'s oxidizing abilities under specific pHs and retention times to reduce organic wastes and improve nutrient gains. A final acid digestion serves to liberate nutrients even further in order to maximize recovery. So far, we have tested ideal acid digestion variables for practicality and performance in our experiments. We found that a low retention time of 10 minutes and a high acid concentration of 0.1 and 1 mole HCl were the most effective at nutrient recovery. For space travel purposes, 0.1 mole currently looks like a viable acid digestion to use since it is relatively effective and sustainable from a mass and energy balance if acid recovery can be performed on waste brines. Biological pretreatments do not look to be too effective and the thermal and photocatalytic methods may be preferred since they show a potential to recover more than 70 percent of the nutrients.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号