首页> 美国政府科技报告 >Depth of Origin of Sputtered Atoms: Experimental and Theoretical Study of Cu/Ru(0001)
【24h】

Depth of Origin of Sputtered Atoms: Experimental and Theoretical Study of Cu/Ru(0001)

机译:溅射原子的深度:Cu / Ru(0001)的实验和理论研究

获取原文

摘要

The depth of origin of sputtered atoms is a subject of considerable interest. The surface sensitivity of analytical techniques such as Secondary Ion Mass Spectrometry (SIMS) and Surface Analysis by Resonance Ionization of Sputtered Atoms (SARISA), and the sputtering properties of strongly segregating alloy systems, are critically dependent on the sputtering depth of origin. A significant discrepancy exists between the predictions of the Sigmund theory and computer sputtering models; in general, the computer models predict a much shallower depth of origin. The existing experimental evidence suggests that most of the sputtered atoms originate in the topmost atomic layer, but until recently, the results have not been definitive. We have experimentally determined the depth of origin of atoms sputtered from surfaces consisting of Cu films of less than two monolayers on a Ru(0001) substrate. The Cu/Ru target was statically sputtered using 3.6 keV Ar sup + . The sputtered neutrals were non-resonantly laser ionized and detected using SARISA. The Cu/Ru sputtering yield ratio and the suppression of the Ru sputtering yield were determined for various Cu coverages. The results indicate that the majority of the sputtered atoms originate in the topmost atomic layer. The Cu/Ru system is also modeled using a modified Transport of Ions in Matter (TRIM) code. It was found that TRIM C does not correctly treat the first atomic layer, resulting in a serious underestimate of the number of sputtered atoms which originate in this layer. The corrected version adequately describes the results, predicting that for the experimental conditions roughly two-thirds of the sputtered atoms originate in the first atomic layer. These results are significantly greater than the Sigmund theory estimate of >40%. 26 refs., 3 figs., 1 tab. (ERA citation 13:010320)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号