首页> 美国政府科技报告 >Wiring Zinc in Three Dimensions Re-writes Battery Performance - Dendrite-Free Cycling
【24h】

Wiring Zinc in Three Dimensions Re-writes Battery Performance - Dendrite-Free Cycling

机译:三维接线锌重写电池性能 - 无枝晶循环

获取原文

摘要

Zinc-based batteries offer a safe, inexpensive alternative to fire-prone lithium-based batteries, but zinc-based batteries do not exhibit sufficient rechargeability yet. Breaking through the centuries-old roadblock to zinc-based rechargeable batteries requires rethinking the electrode structure in order to control how zinc converts to zinc oxide during battery discharge and how the oxide is reversed back to metal upon recharging. We address the problems of inefficient zinc utilization and limited rechargeability by redesigning the zinc electrode as a porous, monolithic, three-dimensional (3D) aperiodic architecture. Utilization approaches 90% (728 mA h gZn-1) when the zinc sponge is used as the anode in a primary (single-use) zinc air cell. To probe rechargeability of the 3D Zn sponge, we cycled Zn vs. Zn symmetric cells and Ag Zn full cells under conditions that would otherwise support dendrite growth, and yet the Zn sponges remain dendrite-free after extensive cycling up to 188 mA h gZn-1. By using 3D-wired zinc architectures that innately suppress dendrite formation, all zinc-based chemistries can be reformulated for next- generation rechargeable batteries.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号