首页> 美国政府科技报告 >Multi-Block Parallel Navier-Stokes Simulation of Unsteady Wind Tunnel and Ground Interference Effects
【24h】

Multi-Block Parallel Navier-Stokes Simulation of Unsteady Wind Tunnel and Ground Interference Effects

机译:非定常风洞的多块并行Navier-stokes模拟及地面干扰效应

获取原文

摘要

A numerical investigation of unsteady wind tunnel and ground interference effects is carried out in the time domain to study the transonic flutter characteristics of the NLR 7301 section inside a wind tunnel and the thrust generation characteristics of a NACA 0014 airfoil plunging near a ground plane. A parallelized, multi-block, deforming grid, unsteady flow-solver is coupled with a two-degree-of-freedom structural model. For the transonic flutter problem, two types of porous-wall boundary-conditions are implemented and tested for the boundaries representing the tunnel walls. The type of porous boundary condition is found to influence significantly both steady and unsteady solutions. Results show that the free-flight flutter behavior may differ significantly from the behavior found in a porous wind tunnel because of the strong dependence on the tunnel porosity parameter and the proximity of the walls. An analysis of the trailing edge boundary condition is performed for the airfoil in ground effect. The computations show that this boundary condition influences the solution only when non-linearities are present in the flow-field, although parameters averaged through a cycle of oscillation are not affected significantly. The same behavior is observed for the influence of the turbulence model on the fully-turbulent, unsteady computations. However, the best agreement with low Reynolds number, experimental data is obtained when the flow is assumed laminar and no turbulence model is applied.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号