首页> 美国政府科技报告 >Burning-Rate Models and Their Successors: A Personal Perspective.
【24h】

Burning-Rate Models and Their Successors: A Personal Perspective.

机译:燃烧率模型及其后继者:个人视角。

获取原文

摘要

The development of models to compute the burning rate of energetic materials has undergone a paradigm shift in the last 15 years from treating the gas-phase reactions as a few global reactions to attempting to describe all of the elementary reactions involved. This shift toward chemical specificity has brought the promise of true predictive capability in such models. Thwarting this promise, however, has been the unattainability of treating the condensed-phase and surface processes with commensurate detail and assurance. In this work, it is shown that limited predictability has recently been achieved by a semi- empirical finesse of the condensed-phase reactions and surface gasification through the agency of a universal pyrolysis law for certain families of propellant ingredients. It is also argued that the long-range prognosis for generalized predictability arising from a first-principles three-phase model lies with developing submodels for the condensed-phase and surface phenomena based on molecular dynamics (MD). However, since a continuum description of the gas-phase processes will always be preferable, the mating of these MD submodels with the continuum gas-phase description will be a non-trivial research issue. To facilitate the coming dialogue between current continuum modelers and future MD modelers, this work describes the conceptual and mathematical basis of the continuum models in considerable detail. It is suggested that the mating of these disparate descriptions might be accomplished by developing simple, idealized continuum submodels whose parameters and assumptions might be justified by the MD submodels. An example of such a continuum submodel is developed for the process of multicomponent evaporation as a surface- gasification mechanism.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号