首页> 美国政府科技报告 >Adaptive Optics Performance Model for Optical Interferometry
【24h】

Adaptive Optics Performance Model for Optical Interferometry

机译:光学干涉测量的自适应光学性能模型

获取原文

摘要

The optical interferometry community has discussed the possibility of using adaptive optics (AO) on apertures much larger than the atmospheric coherence length in order to increase the sensitivity of an interferometer, although few quantitative models have been investigated. The aim of this paper is to develop an analytic model of an AO-equipped interferometer and to use it to quantify, in relative terms, the gains that may be achieved over an interferometer equipped only with tip tilt correction. Functional forms are derived for wavefront errors as a function of spatial and temporal coherence scales and flux and applied to the AO and tip tilt cases. In both cases, the AO and fringe detection systems operate in the same spectral region, with the sharing ratio and subaperture size as adjustable parameters, and with the interferometer beams assumed to be spatially filtered after wavefront correction. It is concluded that the use of AO improves the performance of the interferometer in three ways. First, at the optimal aperture size for a tip tilt system, the AO system is as much as 50% more sensitive. Second, the sensitivity of the AO system continues to improve with increasing aperture size. And third, the signal-to-noise ratio of low-visibility fringes in the bright-star limit is significantly improved over the tip tilt case.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号