首页> 美国政府科技报告 >Ultrafast Optical Control of Entanglement between Two Quantum-Dot Spins
【24h】

Ultrafast Optical Control of Entanglement between Two Quantum-Dot Spins

机译:两个量子点自旋之间纠缠的超快光学控制

获取原文

摘要

The interaction between two quantum bits enables the creation of entanglement, the two-particle correlations that are at the heart of quantum information science. In semiconductor quantum dots, much work has focused on demonstrating control over single spin qubits using optical techniques. However, optical control of two spin qubits remains a major challenge for scaling to a fully fledged quantum-information platform. Here, we combine advances in vertically stacked quantum dots with ultrafast laser techniques to achieve optical control of the entangled state of two electron spins. Each electron is in a separate InAs quantum dot, and the spins interact through tunnelling, where the tunnelling rate determines howrapidly entangling operations can be carried out. We achieve two-qubit gates with an interaction rate of 30 GHz, more than an order of magnitude faster than demonstrated in any other system so far. These results demonstrate the viability and advantages of optically controlled quantum-dot spins for multi-qubit systems.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号