首页> 美国政府科技报告 >Interpolation Approach to Optimal Trajectory Planning for Helicopter Unmanned Aerial Vehicles.
【24h】

Interpolation Approach to Optimal Trajectory Planning for Helicopter Unmanned Aerial Vehicles.

机译:直升机无人机最优轨迹规划的插值方法。

获取原文

摘要

This thesis explores numerical methods to provide real-time control inputs to achieve an optimal trajectory which minimizes the time required for a Helicopter Unmanned Aerial Vehicle (HUAV) to reorient to a given target. A library of optimal trajectories is populated using a pseudospectral computational algorithm applied to the mathematical model developed by the National University of Singapore and Singapore Department of Defense to simulate flight characteristics for their HeLion small scale HUAV system. The model is a complex system of non-linear differential equations-fifteen state variables and four control variables-used to simulate the aerodynamic forces on the HUAV. Then, using the library of optimal trajectories for known target locations, we apply interpolation methods to provide control inputs in order to intercept an attack heading to a target more quickly than an online, full scale optimization approach. All simulations in this thesis are modeled using the MATLAB program.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号