首页> 美国政府科技报告 >Experimental Investigation to Suppress Flow-Induced Pressure Oscillations in Open Cavities.
【24h】

Experimental Investigation to Suppress Flow-Induced Pressure Oscillations in Open Cavities.

机译:抑制开口腔内流动压力振荡的实验研究。

获取原文

摘要

High speed tangential flow over open cavities (e.g. aircraft weapon bays) can invoke large pressure oscillations within the cavity. These large oscillations can damage the cavity structure as well as items placed within the cavity. The purpose of this experimental study was to determine the effectiveness of suppressing pressure oscillations by manipulating the shear layer over a two-dimensional cavity with a length-to-depth ratio of two. Two methods, a frequency controllable control surface (fence) and pulsating secondary airflow at the cavity leading edge, were used to manipulate the shear layer. The suppression effectiveness of the fence utilized in both passive and active modes (zero to 120 Hz) was evaluated at six airflow Mach numbers (0.62, 0.76, 0.90, 1.07, 1.28, 1.53). The effectiveness of pulsating secondary airflow was evaluated at one airflow Mach number (1.28) and two flow injection angles (parallel and 45 degrees to the flow) at frequencies ranging from zero to 80 Hz. The effect of steady flow injection was also evaluated at mass flow rates per unit width ranging from 0.323 to 1.27 (lbm/sec/ft). Pressure recordings from within the cavity were made for each test. The effectiveness of a pulsating fence in suppressing the peak mode pressure oscillations proved to be less than that achievable with the fence static. The pulsed secondary flow injection technique was most effective when pulsed at a 45 degree angle to the external flow. Theses. (aw)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号