首页> 美国政府科技报告 >Mesoscale Modeling of Dynamic Compression of Boron Carbide Polycrystals.
【24h】

Mesoscale Modeling of Dynamic Compression of Boron Carbide Polycrystals.

机译:碳化硼多晶体动态压缩的中尺度模拟。

获取原文

摘要

An anisotropic nonlinear elastic model is advanced for crystals belonging to either of two polytypes of boron carbide ceramic. Crystals undergo transformation to an isotropic, amorphous phase upon attainment of a local state-based criterion associated with a loss of intrinsic stability. The model is implemented using the dynamic finite element method, and is demonstrated on a representative volume consisting of fifty polyhedral grains subjected to uniaxial strain at a uniform high strain rate and shock compression at axial pressures ranging from 10 to 50 GPa. Predicted stress-strain behavior is in close agreement with experimental data. For polycrystals consisting of both polytypes, amorphization initiates at stress levels slightly below the experimental Hugoniot elastic limit, and occurs more readily than observed in experiment. For polycrystals consisting only of the CBC (polar) polytype, amorphization initiates at impact pressures similar to those suggested by experiment. In either case, transformation is promoted by dynamic stress interactions and elastic coefficient mismatch among anisotropic crystals. Results support a previous conjecture that amorphization is related to shear instability and cross-linking of the CBC chain. in the polar polytype.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号