首页> 外文期刊>Photochemistry and Photobiology: An International Journal >Activities, kinetics and emission spectra of bacterial luciferase- fluorescent protein fusion enzymes
【24h】

Activities, kinetics and emission spectra of bacterial luciferase- fluorescent protein fusion enzymes

机译:细菌荧光素酶-荧光蛋白融合酶的活性,动力学和发射光谱

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

A new approach to alter bacterial bioluminescence color was developed by fusing Vibrio harveyi luciferase with the coral Discosoma sp. fluorescent protein mOrange, a homolog of the Aequorea green fluorescent protein. Attachment of mOrange to the N- or C-terminus of luciferase α or β subunit, via a 5 or 10 residue linker, produced fully active fusion enzymes. However, only the fusion of mOrange to the N-terminus of luciferase α produced a new 560 nm emission. The differences in emission color by two such fusion enzymes from that of the wild-type luciferase (λ_(max) 490 nm) were evident by eye or photographically with the aid of cut-off optical filters. In nonturnover reactions, light decay rates of fusion enzyme remained the same when monitored as the full-spectrum light or at 480 nm (from the luciferase emitter) or 570 nm (from mOrange). No 560 nm emission component was observed with a mixture of luciferase and free mOrange. These findings support that the 560 nm emission by the fusion enzyme was due to bioluminescence resonance energy transfer from luciferase to mOrange. We believe that the same approach could also alter the bacterial bioluminescence color by covalent attachment of other suitable fluorescent proteins or chromophores to luciferase. Bacterial (Vibrio harveyi) luciferase was fused with the coral Discosoma sp. fluorescent protein mOrange via a flexible 5 residue (GGGGS) or 10 residue (GGGGSGGGGS) linker. The fusion enzymes retained full luciferase activities. Only the normal 490 nm bioluminescence was observed with luciferase in the absence or presence of free mOrange but bioluminescence resonance energy transfer (BRET) occurred in fusion enzymes as evidenced by the additional 560 nm emission component from mOrange. The fusion of luciferase with appropriate fluorescent proteins thus provides a new approach for controlled alteration of luciferase bioluminescence color.
机译:通过将哈维弧菌荧光素酶与珊瑚Discosoma sp融合,开发了一种改变细菌生物发光颜色的新方法。荧光蛋白橙色,是水母绿荧光蛋白的同源物。通过5或10个残基连接体将mOrange与萤光素酶α或β亚基的N或C末端连接,可产生完全活性的融合酶。但是,只有mOrange与萤光素酶α的N末端融合才能产生新的560 nm发射。两种这样的融合酶与野生型荧光素酶(λ_(最大)490nm)的发射颜色的差异在肉眼或借助截止滤光片的照相下是明显的。在非周转反应中,融合酶的光衰减率在监测为全光谱光时或在480 nm(来自荧光素酶发射器)或570 nm(来自mOrange)时保持不变。用荧光素酶和游离mOrange的混合物未观察到560nm发射组分。这些发现支持融合酶的560 nm发射是由于生物发光共振能量从荧光素酶转移到mOrange。我们相信,通过其他合适的荧光蛋白或发色团与萤光素酶的共价连接,相同的方法也可以改变细菌的生物发光颜色。细菌(哈维氏弧菌)荧光素酶与珊瑚Discosoma sp。融合。荧光蛋白通过柔性的5个残基(GGGGS)或10个残基(GGGGSGGGGS)连接子产生橙色。融合酶保留了完整的萤光素酶活性。在不存在或存在游离橙色的情况下,荧光素酶仅观察到正常的490 nm生物发光,但融合酶中发生了生物发光共振能量转移(BRET),这是由mOrange的额外560 nm发射组分所证明的。荧光素酶与适当的荧光蛋白的融合因此提供了控制荧光素酶生物发光颜色改变的新方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号