...
首页> 外文期刊>Physics and chemistry of the earth >Macro-permeability distribution and anisotropy in a 3D fissured and fractured clay rock: 'Excavation Damaged Zone' around a cylindrical drift in Callovo-Oxfordian Argilite (Bure)
【24h】

Macro-permeability distribution and anisotropy in a 3D fissured and fractured clay rock: 'Excavation Damaged Zone' around a cylindrical drift in Callovo-Oxfordian Argilite (Bure)

机译:3D裂隙和破裂的粘土岩石中的宏观渗透率分布和各向异性:Callovo-Oxfordian闪锌矿的圆柱状漂移周围的“开挖破坏区”(Bure)

获取原文
获取原文并翻译 | 示例
           

摘要

The Underground Research Laboratory at Bure (CMHM), operated by ANDRA, the French National Radioactive Waste Management Agency, was developed for studying the disposal of radioactive waste in a deep clayey geologic repository. It comprises a network of underground galleries in a 130. m thick layer of Callovo-Oxfordian clay rock (depths 400-600. m). This work focuses on hydraulic homogenization (permeability upscaling) of the Excavation Damaged Zone (EDZ) around a cylindrical drift, taking into account: (1) the permeability of the intact porous rock matrix; (2) the geometric structure of micro-fissures and small fractures synthesized as a statistical set of planar discs; (3). the curved shapes of large 'chevron' fractures induced by excavation (periodically distributed).The method used for hydraulic homogenization (upscaling) of the 3D porous and fractured rock is based on a 'frozen gradient' superposition of individual fluxes pertaining to each fracture/matrix block, or 'unit block'. Each unit block comprises a prismatic block of permeable matrix (intact rock) obeying Darcy's law, crossed by a single piece of planar fracture obeying either Darcy or Poiseuille law. Polygonal as well as disc shaped fractures are accommodated. The result of upscaling is a tensorial Darcy law, with macro-permeability K_(ij)(x) distributed over a grid of upscaling sub-domains, or 'voxels'. Alternatively, K_(ij)(x) can be calculated point-wise using a moving window, e.g., for obtaining permeability profiles along 'numerical' boreholes. Because the permeable matrix is taken into account, the upscaling procedure can be implemented sequentially, as we do here: first, we embed the statistical fissures in the matrix, and secondly, we embed the large curved chevron fractures. The results of hydraulic upscaling are expressed first in terms of 'equivalent' macro-permeability tensors, K_(ij)(x, y, z) distributed around the drift. The statistically isotropic fissures are considered, first, without chevron fractures. There are 10,000 randomly isotropic fissures distributed over a 20m stretch of drift. The resulting spatially distributed K_(ij) tensor is nearly isotropic (as expected). At the scale of the whole EDZ, the global K_(FISSURES) is roughly 5000 times larger than permeability K_M. The detailed distribution of the equivalent K_(FISSURES)(x, y, z) defined on a grid of voxels is radially inhomogeneous, like the statistics of the disc fissures. In addition, a moving window procedure is used to compute detailed radial profiles of K_(FISSURES) versus distance (r) to drift wall, and the results compare favorably with insitu permeability profiles (numerical vs. experimental boreholes at Bure's GMR drift).Finally, including the large curved chevron fractures in addition to the random fissures, the resulting K_(ij)(x, y, z) appears strongly anisotropic locally. Its principal directions are spatially variable, and they tend to be aligned with the tangent planes of the chevron fracture surfaces. The global equivalent K_(ij) of the whole EDZ is also obtained: it is only weakly anisotropic, much less so than the local K_(ij)'s. However, because of the radially divergent structure of the 'chevrons' (although not quite cylindrical in geometry), it is recognized that the global K_(ij) due to chevrons lacks physical meaning as a tensor. Considering only the magnitude, it is found that the permeability due to 'chevrons' (K_(CHEVRONS)) is about 4 orders of magnitude larger than that due to statistical fissures (K_(FISSURES)), assuming a hydraulic aperture a_(CHEVRON)=100μm.
机译:由法国国家放射性废物管理署ANDRA运营的Bure地下研究实验室(CMHM)专门用于研究深层黏土地质处置库中放射性废物的处置。它由一个130.m厚的Callovo-Oxfordian粘土岩层(深度为400-600.m)组成的地下画廊网络。这项工作着眼于圆柱形漂移周围的开挖损伤区(EDZ)的水力均质化(渗透率放大),考虑到:(1)完整的多孔岩石基质的渗透性; (2)将微裂缝和小裂缝的几何结构合成为一组统计的平面圆盘; (3)。 3D多孔和裂隙岩石的水力均质化(放大)方法是基于与每个裂隙/矩阵块或“单位块”。每个单元块均包含一个遵循达西定律的可渗透矩阵(完整岩石)的棱柱形块,并与遵循达西定律或泊苏伊尔定律的一条平面裂缝相交。可以容纳多边形以及椎间盘状骨折。放大的结果是张量达西定律,其中宏观渗透率K_(ij)(x)分布在放大的子域或“体素”的网格上。可替代地,可以使用移动窗口来逐点计算K_(ij)(x),例如,以获得沿“数字”井眼的渗透率分布。因为考虑到了渗透性矩阵,所以可以按顺序执行升级过程,就像我们在这里所做的:首先,将统计裂缝嵌入到矩阵中,其次,我们嵌入大的弧形人字形裂缝。水力放大的结果首先用“等效”宏观渗透张量K_(ij)(x,y,z)分布在漂移周围来表示。首先考虑统计各向同性裂缝,没有人字形裂缝。在20m的漂移范围内分布着10,000个随机的各向同性裂缝。所得的空间分布K_(ij)张量几乎是各向同性的(如预期的那样)。在整个EDZ的规模上,整体K_(FISSURES)大约是渗透率K_M的5000倍。像圆盘裂缝的统计一样,在体素网格上定义的等效K_(FISSURES)(x,y,z)的详细分布在径向上是不均匀的。此外,使用移动窗口程序来计算K_(FISSURES)与到漂移壁的距离(r)的详细径向分布图,其结果与原位渗透率分布图(在Bure GMR漂移处的数值与实验井眼)相比具有优势。 ,除了随机裂缝外,还包括大的弧形V形裂缝,所得的K_(ij)(x,y,z)在局部表现出强各向异性。其主要方向在空间上是可变的,并且它们倾向于与V形裂缝表面的切线对齐。还可以获得整个EDZ的全局当量K_(ij):它仅是弱各向异性的,远小于局部K_(ij)。但是,由于“ V形”的径向发散结构(尽管几何形状不是很圆柱形),因此已经认识到,由于V形而导致的整体K_(ij)缺乏作为张量的物理意义。仅考虑幅度,可以发现假设液压孔为a_(CHEVRON),“人字形”(K_(CHEVRONS))的渗透率比统计裂缝(K_(FISSURES))的渗透率大约4个数量级。 = 100微米

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号