首页> 外文期刊>Phycologia >Viable cell sorting of dinoflagellates by multiparametric flow cytometry
【24h】

Viable cell sorting of dinoflagellates by multiparametric flow cytometry

机译:多参数流式细胞术对鞭毛藻的活细胞分选

获取原文
获取原文并翻译 | 示例
           

摘要

Electronic cell sorting for isolation and culture of dinoflagellates and other marine eukaryotic phytoplankton was compared to the traditional method of manually picking cells using a micropipette. Trauma to electronically sorted cells was not a limiting factor, as fragile dinoflagellates, such as Karenia brevis (Dinophyceae), survived electronic cell sorting to yield viable cells. The rate of successful isolation of large-scale (> 4 litres) cultures was higher for manual picking than for electronic cell sorting (2% vs 0.5%, respectively). However, manual picking of cells is more labor intensive and time consuming. Most manually isolated cells required repicking, as the cultures were determined not to be unialgal after a single round of isolation; whereas, no cultures obtained in this study from electronic single-cell sorting required resorting. A broad flow cytometric gating logic was employed to enhance species diversity. The percentages of unique genotypes produced by manual picking or electronic cell sorting were similar (57% vs 54%, respectively), and each approach produced a variety of dinoflagellate or raphidophyte genera. Alternatively, a highly restrictive gating logic was successfully used to target K. brevis from a natural bloom sample. Direct electronic single-cell sorting was more successful than utilizing a pre-enrichment sort followed by electronic single-cell sorting. The appropriate recovery medium may enhance the rate of successful isolations. Seventy percent of isolated cells were recovered in a new medium (RE) reported here, which was optimized for axenic dinoflagellate cultures. The greatest limiting factor to the throughput of electronic cell sorting is the need for manual postsort culture maintenance and assessment of the large number of isolated cells. However, when combined with newly developed automated methods for growth screening, electronic single-cell sorting has the potential to accelerate the discovery of new algal strains.
机译:将用于鞭毛藻和其他海洋真核浮游植物的分离和培养的电子细胞分选与使用微量移液器手动挑选细胞的传统方法进行了比较。对于电子分选的细胞而言,创伤不是限制性因素,因为脆弱的鞭毛虫(如短小Karenia(Dinophyceae))在电子分选中幸存下来,产生了活细胞。人工采摘的大规模(> 4升)培养物的成功分离率要高于电子细胞分选的分离率(分别为2%和0.5%)。但是,手动拣选细胞更加费力且耗时。大多数人工分离的细胞需要挑剔,因为在单轮分离后确定培养物不是单向的;然而,本研究中不需要通过电子单细胞分选获得的培养物。广泛的流式细胞术门控逻辑被用来增强物种多样性。通过人工采摘或电子细胞分选产生的独特基因型的百分比相似(分别为57%和54%),每种方法均产生了多种鞭毛藻或斜纹藻属。可替代地,高度限制性的门控逻辑被成功地用于从自然水华样品中靶向短的K. brevis。直接电子单细胞分选比利用先富集后再进行电子单细胞分选更成功。适当的恢复介质可以提高成功分离的速度。在此处报道的新培养基(RE)中回收了70%的分离细胞,该培养基已针对树胶二鞭毛藻培养进行了优化。电子细胞分选通量的最大限制因素是需要人工后分选培养维护和评估大量分离的细胞。但是,当与新开发的用于生长筛选的自动化方法结合使用时,电子单细胞分选具有加速发现新藻类菌株的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号