...
首页> 外文期刊>Physics and chemistry of the earth >Micrometeorological measurements and vapour pressure deficit relations under in-field rainwater harvesting
【24h】

Micrometeorological measurements and vapour pressure deficit relations under in-field rainwater harvesting

机译:田间雨水收集下的微气象测量和蒸气压亏缺关系

获取原文
获取原文并翻译 | 示例

摘要

In a cropped field, microclimate and thermal stability conditions depend on the canopy structures and the prevailing weather. The main aim of the study therefore was to characterize the vertical profiles of weather variables within and above a maize (Zea mays L.) canopy and to describe the water vapour pressure deficit (VPD) under different atmospheric and soil surface conditions for both wide and narrow runoff strips with the in-field rainwater harvesting (IRWH) system. Micrometeorological measurements of wind, temperature and relative humidity were performed at eight levels, within canopy (1.8 and 2.1 m), and just above the canopy (2.4, 2.7, 3.0, and 3.3 m) up to reference levels (3.9 and 4.5 m) when the maize reached a maximum height of 2.2 m. Under incomplete canopy cover of the IRWH system, two important factors complicated evapotranspiration estimation, namely the local advection and high temperatures of the bare soil between adjacent plant rows. Diurnal variations of water vapour related to turbulence at each locality and its position in the thermal internal boundary layers. Generally, advection was more pronounced in wide runoff strips than narrow strips. On wide runoff strips the wind was more effective in replacing the air between the rows and maintained a higher driving force for evaporation. The maximum VPD over the narrow strips was observed at reference level during a dry day, at about 2.2 kPa in the afternoon, while wet day VPD reached a maximum of 1.8 kPa. The VPD of the wide runoff strips correlated negatively with wind speed, but showed a fairly positive correlation with some scattered values on wet days after rain. Therefore, profile characteristics within and above plant canopies played a key role in determining the VPD and consequently, could help to explain transpiration rates of crops. Hence, VPD relations enhanced the understanding of the heat energy exchange processes under the heterogeneous nature of maize canopy of the IRWH tillage system. (C) 2016 Elsevier Ltd. All rights reserved.
机译:在作物田中,微气候和热稳定性条件取决于树冠结构和盛行的天气。因此,本研究的主要目的是表征玉米冠层内外的天气变量的垂直剖面,并描述在宽广和宽广的不同大气和土壤表面条件下的水蒸气压亏缺(VPD)。田间雨水收集(IRWH)系统可实现狭窄的径流带。风,温度和相对湿度的微气象测量在冠层(1.8和2.1 m)内,正好在冠层(2.4、2.7、3.0和3.3 m)的最高水平(3.9和4.5 m)的八个级别上进行当玉米达到2.2 m的最大高度时。在IRWH系统的冠层不完全覆盖的情况下,两个重要因素使蒸散量估算变得复杂,即局部平流和相邻植物行之间裸土的高温。水蒸气的日变化与每个位置及其在热内部边界层中的位置有关。通常,对流径较窄的径流带对流更为明显。在宽阔的径流带上,风能更有效地替换排之间的空气,并保持较高的蒸发驱动力。在干燥的一天(下午约2.2 kPa)在参考水平上观察到窄条上的最大VPD,而在潮湿的一天VPD达到最大值1.8 kPa。宽径流带的VPD与风速呈负相关,但在雨后的潮湿天数与某些零散值呈正相关。因此,植物冠层内外的轮廓特征在确定VPD中起着关键作用,因此,可以帮助解释农作物的蒸腾速率。因此,VPD关系增强了IRWH耕作系统玉米冠层异质性下热能交换过程的理解。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号