首页> 外文期刊>Philosophical magazine: structure and properties of condensed matter >Application of the strain invariant failure theory (SIFT) to metals and fiber-polymer composites
【24h】

Application of the strain invariant failure theory (SIFT) to metals and fiber-polymer composites

机译:不变应变破坏理论(SIFT)在金属和纤维-聚合物复合材料中的应用

获取原文
           

摘要

The strain invariant failure theory (SIFT) model, developed to predict the onset of irreversible damage of fiber-polymer composite laminates, may be also applied to metals. Indeed, it can be applied to all solid materials. Two initial failure mechanisms are considered - distortion and dilatation. The author's experiences are confined to the structures of transport aircraft; phase changes in metals and self-destruction of laminates during curing are not covered. Doing so would need additional material properties, and probably a different failure theory. SIFT does not cover environmental attack on the interface between fibers and resin; it covers only cohesive failures within the fibers or resin, or within a homogeneous piece of metal. In the SIFT model, each damage mechanism is characterized by its own critical value of a strain invariant. Each mechanism dominates its own portion of the strain domain; there is no interaction between them. Application of SIFT to metals is explained first. Fiber-polymer composites contain two discrete constituents; each material must be characterized independently by its own two invariants. This is why fiber-polymer composites need four invariants whereas metals require only two. There is no such thing as a composite material, only composites of materials. The composite materials must not be modeled as homogeneous anisotropic solids because it is then not even possible to differentiate between fiber and matrix failures. The SIFT model uses measured material properties; it does not require that half of them be arbitrarily replaced by unmeasurable properties to fit laminate test data, as so many earlier composite failure criteria have. The biggest difference in using SIFT for metals and fiber-reinforced materials is internal residual thermal and moisture absorption stresses created by the gross dissimilarity in properties between embedded fibers and thermoset resin matrices. These residual stresses consume so much of the strength of unreinforced polymers for typical thermoset resins cured at high temperature, like epoxies, that little strength is available to resist mechanical loads. (Thermoplastic polymers suffer far less in this regard.) The paper explains how SIFT is used via worked examples, which demonstrate the kind of detailed information that SIFT analyses can generate.
机译:用于预测纤维-聚合物复合材料层压板不可逆破坏的发生的应变不变破坏理论(SIFT)模型也可以应用于金属。实际上,它可以应用于所有固体材料。考虑了两个初始故障机制-变形和膨胀。作者的经验仅限于运输机的结构。金属的相变和层压板在固化过程中的自毁不包括在内。这样做将需要其他材料属性,并且可能需要不同的失效理论。 SIFT并未涵盖对纤维与树脂之间的界面的环境侵害;它仅涵盖纤维或树脂内或均质金属内的内聚破坏。在SIFT模型中,每种损伤机制都以其自身的应变不变性临界值为特征。每种机制都控制着它自己的应变域部分。他们之间没有互动。首先说明SIFT在金属上的应用。纤维-聚合物复合材料包含两个离散的成分。每种材料都必须以其自己的两个不变量来独立表征。这就是纤维-聚合物复合材料需要四个不变性而金属仅需要两个不变性的原因。没有复合材料,只有复合材料。不能将复合材料建模为均质的各向异性固体,因为这样就不可能区分纤维和基体破坏。 SIFT模型使用测得的材料特性;它不需要像许多早期的复合材料破坏准则那样,用不可测量的属性任意替换其中的一半以适合层压板测试数据。在金属和纤维增强材料中使用SIFT的最大区别是内部残留的热和水分吸收应力,这是由嵌入纤维和热固性树脂基体之间的性能完全不同而产生的。对于典型的高温固化的热固性树脂(例如环氧树脂),这些残余应力消耗了未增强聚合物的大部分强度,以至于几乎没有强度可以抵抗机械负载。 (热塑性聚合物在这方面遭受的损失要小得多。)本文通过工作示例说明了如何使用SIFT,这些示例演示了SIFT分析可以生成的详细信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号