首页> 外文期刊>Philosophical magazine, B. Physics of condensed matter, electronic, optical, and magnetic properties >Self-consistent density-functional approach to the correlated ground states and an unrestricted many-body perturbation theory
【24h】

Self-consistent density-functional approach to the correlated ground states and an unrestricted many-body perturbation theory

机译:相关基态的自洽密度函数方法和不受限制的多体摄动理论

获取原文
获取原文并翻译 | 示例
           

摘要

We introduce a scheme through which the ground-state electronic density n and total energy E-y[n] of inhomogeneous interacting systems can be determined in a self-consistent (SC) way. It is based on a SC perturbation expansion for the single-particle Green function G. Our employed expansion is argued to be valid under all conditions provided that the ground-state charge density of the interacting system is pure-state non-interacting v representable. The formalism discussed in this paper has been applied to a quasi-one-dimensional periodic system. It has even been possible to carry out SC calculations with the dynamically screened exchange diagram (the so-called GW diagram, where W is the dynamically screened electron-electron interaction function) for the self-energy operator Sigma. A coherent mode of interpretation of a number of our results entails that the overwhelming success of the GW framework in relatively accurately reproducing the experimental energy gaps of a number of semiconductors and insulators may be a direct of non-self consequence consistency effects; whereas a non-self-consistent calculation in our tests increases the value of the local-density approximation (LDA) gap in the range of 40-65% of the 'experimental' gaps, self-consistency effects reduce this range to 14-17%. The same line of argument leads us to conclude that, in our model, 26-35% of the LDA error in the gap energies is due to the absence of a well known discontinuity in the LDA exchange-correlation potential, and the remaining part is due to the Kohn-Sham eigenvalues not being identifiable with one-particle excitation energies. A natural conclusion that may be drawn from these observations is that a correct description of excitation energies (e.g. of the gap energy) cannot be achieved without including, at least approximately, the vertex part of Sigma, which is entirely absent in the GW scheme.
机译:我们介绍一种方案,通过该方案可以以自洽(SC)方式确定不均匀相互作用系统的基态电子密度n和总能量E-y [n]。它基于单粒子格林函数G的SC摄动展开。我们假设所使用的展开在所有条件下都是有效的,只要相互作用系统的基态电荷密度为纯态非相互作用v即可表示。本文讨论的形式主义已被应用于准一维周期系统。甚至有可能使用自筛选算子Sigma的动态筛选交换图(所谓的GW图,其中W是动态筛选的电子-电子相互作用函数)进行SC计算。对我们许多结果的一致解释方式意味着,GW框架在相对准确地重现许多半导体和绝缘体的实验能隙方面取得了压倒性的成功,这可能是非自我后果一致性效应的直接表现。而我们测试中的非自洽计算将局部密度近似(LDA)差距的值提高了“实验”差距的40-65%,而自洽效应则将该范围缩小至14-17 %。同样的论点使我们得出结论,在我们的模型中,间隙能量中LDA误差的26-35%是由于LDA交换相关势中不存在众所周知的不连续性,其余部分是由于无法用单粒子激发能识别Kohn-Sham特征值。从这些观察中可以得出的自然结论是,如果不至少包括GW方案中完全不存在的Sigma的顶点部分,就无法获得对激发能(例如,间隙能)的正确描述。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号